Publikationsliste/Publication list (pdf)


Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk
Proteins from Lacewing Chrysoperla carnea
Neuenfeldt, M.. & Scheibel, T.
Biomolecules 2017, 7: 43
doi: 10.3390/biom7020043
Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)
Thamm, C. & Scheibel, T.
Biomacromolecules 2017, 18: 1365 - 1372
doi: 10.1021/acs.biomac.7b00090
Conformational stability and interplay of N- and C-terminal domains
Bauer, J. & Scheibel, T.
Biomacromolecules 2017, 18: 835 - 845
doi: 10.1021/acs.biomac.6b01713
Mechanical testing of engineered spider silk filaments
Lang, G., Neugirg, B., Kluge, D., Fery, A. & Scheibel, T.
ACS Appl. Mater. Interfaces, 2017, 9: 892 - 900
doi: 10.1021/acsami.6b13093
Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurements
Helfricht, N., Doblhofer, E., Bieber, V., Lommes, P., Sieber, V., Scheibel, T. & Papastavrou, G.
Soft Matter 2017, 13: 578 - 589
doi: 10.1039/c6sm02326f
Buchkapitel/Book chapters
Properties of engineered and fabricated silks
Lang, G., Herold, H. & Scheibel, T..
In: Subcell. Biochem., Springer
doi: 10.1007/978-3-319-49674-0_16


Acidic residues control the dimerization of the N-terminal domain
Bauer, J., Schaal, D., Eisold, L., Schweimer, K., Schwarzinger, S. & Scheibel, T.
Sci. Rep., in print

doi: 10.1038/srep34442
Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties
Doblhofer, E., Schmid, J., Rieß, M., Daab, M., Suntinger, M., Habel, C., Bargel, H., Hugenschmidt, C., Rosenfeldt, S., Breu, J. & Scheibel, T.
Appl. Mater. Interfaces 2016, 8: 25535 - 25543

doi: 10.1021/acsami.6b08287
Colloidal properties of recombinant spider silk protein particles
Helfricht, N., Doblhofer, E., Duval, J., Scheibel, T. & Papastavvrou, G.
J. Phys. Chem. C. 2016, 120, 18015 - 18027

doi: 10.1021/acs.jpcc.6b03957
Cellular uptake of drug loaded spider silk particles
Schierling, M., Doblhofer, E. & Scheibel, T.
Biomater. Sci. 2016, 4: 1515-1523

doi: 10.1039/c6bm00435k
Surface modification of polymeric biomaterials using recombinant spider silk proteins
Borkner, C., Wohlrab, S., Möller, E., Lang, G. & Scheibel, T.
ASC Biomat. Sci.Eng. 2017, 3: 767 - 775

doi: 10.1021/acsbiomaterials.6b00306
Microfluidics-produced collagen fibers show extraordinary mechanical properties
Haynl, C., Hofmann, E., Pawar, K., Foerster, S. & Scheibel, T.
Nano Lett. 2016, 16: 5917 - 5922

doi: 10.1021/acs.nanolett.6b02828
Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins
DeSimone, E., Schacht, K. & Scheibel, T.
Mater. Lett., 183
: 101-104
doi: 10.1016/j:matlet.2016.07.044
Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering
Hardy, J. G., Torres-Rendon, J. G., Leal-Egana, A., Walther, A., Schlaad, H., Cölfen, H. & Scheibel, T.
9(7): 560
doi: 10.3390/ma9070560
Foams made of engineered recombinant spider silk proteins
Schacht, K., Vogt, J. & Scheibel, T.
ACS Biomater. Sci. Eng.
2: 517-525
doi: 10.1021/acsbiomaterials.5b00483
Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster
Schaal, D., Bauer, J., Schweimer, K., Scheibel, T., Rösch, P. & Schwarzinger. S.
Biomol. NMR Assign.
10: 199-202
doi: 10.1007/s12104-016-9666-y
Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning
Peng, L., Jiang, S., Seuß, M., Fery, A., Lang, G., Scheibel, T. & Agarwal, S.
Macromol. Mater. Eng.
301: 48-55
doi: 10.1002/mame.201500217

Recombinant Silk Production in Bacteria
Kaplan, D. & Scheibel, T..
Reference Module in Materials Science and Engineering

Die schwarze Witwe und ihre Künste
Bauer, J. & Scheibel, T.
UBT Aktuell, 2: 60 - 63
Zukunftsfeld Bionik
Scheibel, T. & Bargel, H.
UBT Spektrum, 1: 54 - 57
Strategies and molecular design criteria for 3D printable hydrogels
Juengst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J.
Chem. Rev. 116: 1496-1539
doi: 10.1002/nadc.20164044385
Zellgewebe aus dem Drucker
Schacht, K., Juengst, T., Zehnder, T., Boccaccini, A.R., Groll, J. & Scheibel, T.
Nachrichten aus der Chemie 64: 13-16
doi: 10.1002/nadc.20164044385
Buchkapitel/Book chapters
Scheibel, T., Zahn, H. & Krasowski, A.
In: Ullmann's Encyclopedia of industrial Chemistry. Wiley-VCH Verlag GmbH & Co.
doi: 10.1002/14356007.a24_095.pub2


Data for ion and seed dependent fibril assembly of a spidroin core domain
Humenik, M., Smith, A.M., Arndt, S. & Scheibel, T.
Data in Brief
4: 571–576
doi: 10.1016/j.dib.2015.07.023
Ion and seed dependent fibril assembly of a spidroin core domain
Humenik, M., Smith, A.M., Arndt, S. & Scheibel, T.
Journal of Structural Biology
191: 130–138
doi: 10.1016/j.jsb.2015.06.021
Enzymatic degradation of films, particles and non-woven meshes
Müller-Herrmann, S. & Scheibel, T.
ACS Biomater. Sci. Eng.
, 1: 247–259
doi: 10.1021/ab500147u
Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
Heidebrecht, A., Eisoldt, L., Diehl, J., Schmidt, A., Geffers, M., Lang, G. & Scheibel, T.
Adv. Mater.
, 27: 2189–2194
doi: 10.1002/adma.201404234
Biofabrication of cell-loaded 3D spider silk constructs
Schacht, K., Jüngst, T., Schweinlin, M., Ewald, A., Groll, J. & Scheibel, T.
Angew, Chem., 54: 2816–2820
doi: 10.1002/anie.201409846
Enhanced cellular uptake of engineered spider silk particles
Elsner, M.B., Herold, H., Müller-Herrmann, S., Bargel, H. & Scheibel, T.
Biomater.. Sci, 3: 543-551
doi: 10.1039/c4bm00401a
Engineering of recombinant spider silk proteins allows defined uptake and release of substances
Doblhofer, E. & Scheibel, T.
J. Pharm. Sci, 104: 988-994
doi: 10.1002/jps.24300
Die Kräfte von Superhelden – Oder: Was Spiderman besser wissen sollte
Scheibel, T.
Vorlesungsreihe KinderUniversität Bayreuth SS 2015
Vom Spinnennetz zur High-Tech-Faser
Scheibel, T.
Naturwiss. Rundschau.. 68: 524-525
Strategies and molecular design criteria for 3D printable hydrogels
Juengst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J.
Chem. Rev.. 99: 9361-9380
doi: 10.1021/acs.chemrev.5b00303
To spin or not to spin: spider silk fibers and more
Doblhofer, E., Heidebrecht, A. & Scheibel, T.
Appl. Microbiol. Biotechnol. 99: 9361-9380
doi: 10.1007/s00253-015-6948-8
Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks
DeSimone, E., Schacht, K., Jüngst, T., Groll, J. & Scheibel, T.
Pure Appl. Chem., 87: 737–749

Engineering of rec SSP allows defined drug uptake and release
Scheibel, T.
TechConnect Briefs
2015: Biotech, Biomaterials and Biomedical
CRC Press


Verbesserung der Biokompatibilität von Silikonimplantaten
Zeplin, P.H., Berninger, A., Maksimovikj, N., van Gelder, P., Scheibel, T. & Walles, H.
Handchir. Mikrochir. Plast. Chir., 46: 336-41
doi: 10.1055/s-0034-1395558
Life cycle assessment of spider silk nonwoven meshes in an air filtration device
Lauterbach, A.Y. & Scheibel, T.
Green Materials., 3: 15-24
doi: 10.1680/gmat.14.00011
Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Humenik, M., Drechsler, M. & Scheibel, T.
Nano Lett.., 14, 3999−4004
doi: 10.1021/nl501412k
Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
Humenik, M., Magdeburg, M. & Scheibel, T.
J. Struct. Biol., 186, 431-437
doi: 10.1016/j.jsb.2014.03.010
Crystallization and preliminary X-ray diffraction analysis os PTMP1
Suhre, M.H., Scheibel, T., Steegborn, C. & Gertz, M.
Acta Crystallographica Section F 70, 769-772
Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion
Hardy, J.G., Pfaff, A., Leal-Eganã, A., Müller, A.H.E. & Scheibel, T.R.
Macromol. Biosci., 14, 936-42
doi: 10.1002/mabi.201400020
Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Suhre, M.H. & Scheibel, T.
J. Struct. Biol. 186, 75-85
doi: 10.1016/j.jsb.2014.02.013
Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Suhre, M.H., Gertz, M., Steegborn, C. & Scheibel, T.
Nat. Comm., 5, 3392
doi: 10.1038/ncomms4392
Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders
Dos Santos-Pinto, J.R.A., Lamprecht, G., Chenb, W.Q., Heob, S., Hardy, J.G., Priewalder, H., Scheibel, T.R., Palma, M.S. & Lubec, G.
J. Prot., 105, 174–185
doi: 10.1016/j.jprot.2014.01.002
Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation
Zeplin, P.H., Maksimovikj, N.C., Jordan, M.C., Nickel, J., Lang, G., Leimer, A.H., Römer, L. & Scheibel, T.
Adv. Funct. Mater. 24, 2658–2666
doi: 10.1002/adfm.201302813
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
Humenik, M. & Scheibel, T.
ACS Nano 8, 1342-1349
doi: 10.1021/nn404916f
Spionik - Biotech Spinnenseide und ihre Einsatzgebiete
Heidebrecht, A. & Scheibel, T.
GIT Bioforum 2, 20-22
Self-assembly of nucleic acids, silk and hybrid materials thereof
Humenik, M. & Scheibel, T.
J. Phys. Condens. Matter 26, 503102
doi: 10.1088/0953-8984/26/50/503102
Bioinspired materials engineering
Zollfrank, C., Scheibel, T., Seitz, H. & Travitzky, N.
Ullmann's Encyclopedia of Industrial Chemistry
doi: 10.1002/14356007.s04_s01
Coatings and films made of silk proteins
Borkner, C.B., Elsner, M.B. & Scheibel, T.
ACS Appl. Mater. Interface. 29, 62-69
doi: 10.1021/am5008479
Multifunktionale Spinnenseide – ein vielversprechender Werkstoff
Lang, G. & Scheibel, T.
MaschinenMarkt 26, 36-39
Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
Schacht, K. & Scheibel, T.
Curr. Opin. Biotechnol. 29, 62-69
doi: 10.1016/j.copbio.2014.02.015
Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels
Hagenau, A., Suhre, M.H. & Scheibel, T.R.
Progr. Polym. Sci. 39, 1564-1583
doi: 10.1016/j.progpolymsci.2014.02.007
Die Natur als Vorbild für bioinspirierte Materialien der Zukunft
Scheibel, T.
DVS Seminare 300, 33-36
Buchkapitel/Book chapters
Silks From Insects – From Natural Diversity to Applications
Neuenfeldt, M. & Scheibel, T.
In: K. H. Hoffmann (ed): Insect Molecular Biology and Ecology. CRC Press
ISBN 9781482231885


Rheological characterization of silk solutions
Keerl, D. & Scheibel, T.
Green Materials 2, 11 –23
doi: 10.1680/gmat.13.00009
Lipid-specific ß-sheet formation in a mussel byssus protein domain
Heim, M., Elsner, M.B. & Scheibel, T.
Biomacromolecules 14, 3238-45
doi: 10.1021/bm400860y
Spider silk capsules as protective reaction containers for enzymes
Bluem, C., Nichtl, A. & Scheibel, T.
Adv. Funct. Mater. 24, 763–768
doi: 10.1002/adfm.201302100
Controllable cell adhesion, growth and orientation on layered silk protein films
Bauer, F., Wohlrab, S. & Scheibel, T.
Biomater. Sci. 1, 1244-1249
doi: 10.1039/c3bm60114e
Surface properties of spider silk particles in solution
Helfricht, N., Klug, M., Mark, A., Kuznetsov, V., Bluem, C., Scheibel, T. & Papastavrou, G.
Biomater. Sci. 1, 1166-1171
doi: 10.1039/C3BM60109A
Micromechanical characterization of spider silk particles
Neubauer, M.P., Bluem, C., Agostini, E., Engert, J., Scheibel, T. & Fery, A.
Biomater. Sci. 1, 1160-1165
doi: 10.1039/C3BM60108K
Engineered spider silk protein-based composites for drug delivery
Hardy, J.G., Leal-Eganã, A. & Scheibel, T.
Macromol. BioSci. 13, 1431–1437
doi: 10.1002/mabi.201300233
Protein gradient films of fibroin and gelatine
Claussen, K.U.., Lintz, E.S., Giesa, R., Schmidt, H.W. & Scheibel, T.
Macromol. BioSci. 13, 1396–1403
doi: 10.1002/mabi.201300221
Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
Lang, G., Jokisch, S. & Scheibel, T.
J. Vis. Exp. 75, e50492 (link)
doi: 10.3791/50492
Cell-to-cell propagation of infectious cytosolic protein aggregates
Hofmann, J.P., Denner, P., Nussbaum-Krammer, C., Kuhnc, P.-H., Suhre, M.H., Scheibel, T., Lichtenthaler, S.F., Schaetzl, H.M., Bano, D. & Vorberg, I.M.
PNAS 110, 5951–5956
doi: 10.1073/pnas.1217321110
Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit
Scheibel, T.
Chemie & More, 4, 3-5
Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers
Lintz, E.S. & Scheibel T.
Adv. Funct. Mater. 23, 4467–4482
doi: 10.1002/adfm.201300589
Recombinant Production of Spider Silk Proteins
Heidebrecht, A. & Scheibel T.
Adv. Appl. Microbiol. 82, 115-153
doi: 10.1016/B978-0-12-407679-2.00004-1
Buchkapitel/Book chapters
The Power of Recombinant Spider Silk Proteins
Wohlrab, S., Thamm, C. & Scheibel, T.
In: T. Asakura and T. Miller (eds): Biotechnology of Silk. Biologically-Inspired Systems 5, Springer Science & Business Media, Dordrecht
doi: 10.1007/978-94-007-7119-210
Determining the Environmental Benefit of Artificial Spider Silk Products
Lauterbach, A.Y. & Scheibel, T.
CTSI-Cleantech 2013, 108-111
Hierarchical Protein Assemblies as a Basis for Materials
Smith, A. & Scheibel, T.
In: P. Fratzl, J. Dunlop & R. Weinkamer (eds): Materials Design Inspired by Nature: Function Through inner Architecture, pp. 256-281
RCS Publishing, Cambridge. doi: 10.1039/9781849737555-00256


Dependence of mechanical properties of lacewing egg stalks on relative humidity
Bauer, F., Bertinetti, L., Masic, A. & Scheibel, T.
Biomacromolecules. 13, 3730-3735
doi: 10.1021/bm301199d
Varying surface hydrophobicities of coatings made of recombinant spider silk proteins
Wohlrab, S., Spieß, K. & Scheibel, T.
J. Mater. Chem. 22, 22050-22054
doi: 10.1039/c2jm35075k
Utilizing conformational changes for patterning thin films of recombinant spider silk proteins
Young, S.L., Gupta, M., Hanske, C., Fery, A., Scheibel, T. & Tsukruk, V.V.
Biomacromolecules 13, 3189-3199
doi: 10.1021/bm300964h
Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
Wohlrab, S., Mueller, S., Schmidt, A., Neubauer, S., Kessler, H., Leal‐Egaña A. & Scheibel, T.
Biomaterials 33, 6650-6659
doi: 10.1016/j.biomaterials.2012.05.069
Interactions of cells with silk surfaces
Leal‐Egaña A. & Scheibel, T.
J. Mater. Chem. 22, 14330-14336
doi: 10.1039/c2jm31174g
Artificial egg stalks made of a recombinantly produced lacewing silk protein
Bauer, F. & Scheibel, T.
Ang. Chemie Intl. Edit. 124, 6627-6630
doi: 10.1002/anie.201200591
Characterization of natural and biomimetic spider silk fibers
Keerl, D. & Scheibel, T.
Bioinspired, Biomimetic and Nanobiomaterials (BBN) 1, 83-94
doi: 10.1680/bbn.11.00016
Interactions  of  fibroblasts  with  different  morphologies  made  of  an  engineered  spider  silk  protein
Leal‐Egaña A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S. & Scheibel T.
Adv.  Eng.  Mater. 14, B67-B75
Control of drug loading and release properties of spider silk sub-microparticles
Bluem, C. & Scheibel, T.
BioNanoSci. 2, 67-74
doi: 10.1007/s12668-012-0036-7
Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads
Claussen, K. U., Giesa, R., Scheibel, T. & Schmidt, H.-W.
Macromol. Rapid Commun. 33, 206-211
doi: 10.1002/marc.201100620
Polymer gradient materials: can nature teach us new tricks?
Claussen, C.-U., Scheibel, T., Schmidt, H.-W. & Giesa, R.
Macromol. Mater. Eng. 297, 938–957
doi: 10.1002/mame.201200032
The role of terminal domains during storage and assembly of spider silk proteins
Eisoldt, L., Thamm, C. & Scheibel, T.
Biopolymers 97, 355-361
doi: 10.1002/bip.22006
Herstellung und Verarbeitung von Spinnenseidenproteinen. Biopolymere mit Anwendungspotenzial für die Zukunft
Scheibel, T.
GAK Gummi Fasern Kunststoffe 65 (1), 41-43
Buchkapitel/Book chapters

Spider Silk
Slotta, U., Spieß, K. & Scheibel, T.
In: S. P. Jarvis & A. S. Mostaert (eds): The Functional Fold. Useful Amyloid Structures in Nature, pp. 73-90
Pan Stanford Publishing, Singapore


Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films
Spiess, K., Ene, R., Keenan, C.D., Senker, J., Kremer, F. & Scheibel, T.
J. Mater. Chem. 21, 13594-13604
doi: 10.1039/C1JM11700A
Controlled hydrogel formation of a recombinant spider silk protein
Schacht, K & Scheibel T.
Biomacromolecules 12, 2488–2495
Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads
Hagenau, A & Papadopoulos, P., Kremer, F & Scheibel T.
J. Structural Biol. 175, 339-347

Recombinant spider silk particles as drug delivery vehicles
Lammel A., Schwab, M, Hofer, M., Winter, G. & Scheibel T.
Biomaterials 32, 2233–2240
doi: 10.1016/j.biomaterials.2010.11.060

pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation
Hagn, F., Thamm, C., Scheibel, T. & Kessler, H.
Angew. Chem. Int. Ed. 50, 310-313
doi: 10.1002/anie.201003795

Recombinant spider silks – biopolymers with potential for future applications
Humenik, M., Smith, A.M. & Scheibel T.
Polymers 3, 640–661

Recombinant spider silk proteins for applications in biomaterials
Spiess, K., Lammel, A., Scheibel, T.
Best of Macros 2011, S32-S41
doi: 10.1002/mabi.201000071

Decoding the secrets of spider silk
Eisoldt, L., Smith, A.M. & Scheibel T.
Materials Today 14, 80–86
Buchkapitel/Book chapters

Spider silk: Understanding the Structure-Function Relationship of a Natural Fiber
Humenik, M., Scheibel, T. & Smith, A.
In: S. Horworka (ed): Progress in Molecular Biology and Translational Science 103; Molecular Assembly in Natural and Engineered Systems, pp. 131-185
Academic Press, London


Structural characterization and functionalization of engineered spider silk films
Spiess, K., Wohlrab, S. & Scheibel, T.
Soft Matter 6, 4168–4174
doi: 10.1039/b927267d

Biomimetic spinning of recombinant silk proteins
Keerl, D., Hardy, J.G. & Scheibel, T.
Mater. Res. Soc. Symp. Proc. 1239, VV07-20

A conserved spider silk domain acts as a molecular switch that controls fibre assembly
Hagn, F., Eisoldt, L., Hardy, J.G., Vendrely, C., Coles, M., Scheibel, T. & Kessler, H.
Nature 365, 239-242
doi: 10.1038/nature08936

Controlling silk fibroin particle features for drug delivery
Lammel, A. S., Hu, X., Park, H.-S., Kaplan, D. L. & Scheibel, T.
Biomaterials 31, 4583-4591
doi: 10.1016/j. biomaterials.2010.02.024

Towards the recombinant production of mussel byssal collagens
Hagenau, A. & Scheibel, T.
J. Adhesion 86, 10-24
doi: 10.1080/00218460903417701

The role of salt and shear on the storage and assembly of spider silk proteins
Eisoldt, L., Hardy, J. G., Heim, M. & Scheibel, T. R.
J. Struct. Biol. 170, 413–419
doi: 10.1016/j.jsb.2009.12.027

Characterization of recombinantly produced spider flagelliform silk domains
Heim, M., Ackerschott, C. B. & Scheibel, T. R.
J. Struct. Biol. 170, 420–425
doi: 10.1016/j.jsb.2009.12.025

Spider silk from nature to bio-inspired materials
Scheibel T.
Chem Fiber Int 3, 15-16

Advanced Biomaterials
Scheibel, T.
Macromol. Biosciences 10, 674
doi: 10.1002/mabi.201000195

Recombinant spider silk proteins for applications in biomaterials
Spiess, K., Lammel, A., Scheibel, T.
Macromol. Biosciences 10 (9), 998-1007
doi: 10.1002/mabi.201000071

Composite materials based on silk proteins
Hardy, J.G. & Scheibel, T.R.
Progr. Polymer Sci. 35, 1093-1115

Silk-based materials for biomedical applications
Leal-Egaña, A. & Scheibel, T.
Biotechnol. Appl. Biochem. 55, 155–167

Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins
Heim, M., Römer, L. & Scheibel, T.
Chem. Soc. Rev. 39, 156–164
doi: 10.1039/b813273a


Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM
Suhre, M.H., Hess, S., Golser, A.V., Scheibel, T.
J. Inorg. Biochem. 120, 1711-1720

Interfacial rheological properties of recombinant spider-silk proteins
Vézy, C., Hermanson, K.D., Scheibel, T. & Bausch, A.R.
Biointerphases 4, 43-46
doi: 10.1116/1.3174930

Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
Pirzer, T., Geisler, M., Scheibel, T. & Hugel, T.
Physical Biol. J. 6, 025004 (8pp)

The yeast Sup35NM domain propagates as a prion in mammalian cells
Krammer, C., Kryndushkin, D., Suhre, M.H., Kremmer, E., Hofmann, A., Pfeifer, A., Scheibel, T., Wickner, R., Schätzl, H. & Vorberg, I.
Proc. Natl. Acad. Sci. USA 106, 462-467
doi: 10.1073/pnas.0811571106

Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis
Hagenau, A., Scheidt, H.A., Serpell, L., Huster, D. & Scheibel, T.
Macromol. Biosciences 9, 162-168
doi: 10.1002/mabi.200800271

Functional amyloids used by organisms: A lesson in controlling assembly
Smith A.M. & Scheibel, T.
Macromol. Chem. Phys. 210, 127-135
doi: 10.1002/macp.200900420

Silk-inspired polymers and proteins
Hardy, J.G. & Scheibel, T.
Biochem. Soc. Trans. 37, 677–681

Production and processing of spider silk proteins
Hardy, J.G. & Scheibel, T.
J. Polymer Sci.: Part A: Polymer Chem. 47, 3957–3963
doi: 10.1002/pola.23484

Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered proteins
Grunwald, I., Rischka, K., Kast, S.M., Scheibel, T. & Bargel, H.
Phil. Trans. Roy. Soc. London: A 367, 1727-1747

Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk proteins
Heim, M., Römer, L. & Scheibel, T.
Chem. Soc. Rev. 39, 156–164
doi: 10.1039/b813273a

The elaborate structure of spider silk: Structure and function of a natural high performance fiber
Roemer, L. & Scheibel, T.
Prion 2, 154-161

Spinnenseide: Was Spiderman wissen sollte
Scheibel, T.
BioSpektrum 15, 23-25

Spider Silk: From Soluble Protein to Extraordinary Fibers
Heim, M., Keerl, D. & Scheibel, T.
Angew. Chem. Int. Edit. 48, 2 – 15
doi: 10.1002/anie.200803341


Formulation of poorly water-soluble substances using self-assembling spider silk protein
Liebmann, B., Hummerich, D., Scheibel, T. & Fehr, M.
Colloids and Surfaces A: Physicochem. Eng. Aspects 331, 126-132

An engineered spider silk protein forms microspheres
Slotta, U., Rammensee, S., Gorb, S. & Scheibel, T.
Angew. Chem. Int. Edit. 47, 4592-4594

Processing conditions for spider silk microsphere formation
Lammel, A., Schwab, M., Slotta, U., Winter, G. & Scheibel, T.
ChemSusChem 5, 413-416

Assembly mechanism of recombinant spider silk proteins
Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.
Proc. Natl. Acad. Sci. USA. 105, 6590-6595

Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces
Horinek, D., Serr, A., Geisler, M., Pirzer, T., Slotta, U., Lud, S.Q., Garrido, J.A., Scheibel, T., Hugel, T. & Netz, R.R.
Proc. Natl. Acad. Sci. USA. 105, 2842-2847

Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study
Geisler, M., Pirzer, T., Ackerschott, C., Lud, S., Garrido, J., Scheibel, T. & Hugel, T.
Langmuir 24, 1350-1355

Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells
Krammer, C., Suhre, M.H., Kremmer, E., Diemer, C., Hess, S., Schätzl, H.M., Scheibel, T. & Vorberg, I.
FASEB J. 22, 762-773


Polymeric materials based on silk proteins
Hardy J.G., Roemer, L.M. & Scheibel, T.
Polymer 49, 4309-4327

Spinnen wie die Spinnen
Roemer, L. & Scheibel, T.
Nachrichten a. d. Chem. 56, 516-519

Spinnenseidenproteine als pharmazeutischer Hilfsstoff
Weidenauer, U. & Scheibel, T.
Deutsche Apothekerzeitung 148, 3152-3154

Buchkapitel/Book chapters

Proteins: Polymers of natural origin
Lammel, A., Keerl, D., Römer, L. & Scheibel, T.
In: J. Hu, (ed.), Biomaterials: Chemistry and Physics, pp. 1-22

Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials
Vendrely, C., Ackerschott, C., Roemer, L. & Scheibel, T.
In: E. Gazit & R. Nussinov (eds): Methods in Molecular Biology. Nanostructure Design: Methods and Protocols 474, pp. 3-14
The Elaborate Structure of Spider Silk: Structure and Function of a Natural High Performance Fiber
Roemer, L. & Scheibel, T.
In: T. Scheibel (ed.): Fibrous proteins
Landes Biosciences, Austin


Permeability of silk microcapsules made by the interfacial adsorption of protein
Hermanson, K.D., Harasima, M.B., Scheibel, T. & Bausch, A.R.
Phys. Chem. Chem. Phys. 9, 6442-6446

Alternate assembly pathways of the amyloidogenic yeast prion determinant

Hess, S., Lindquist, S. & Scheibel, T.
EMBO Rep. 8,1196-1201

Transparente Folien aus Spinnenseide - Ein Hocheistungsmaterial aus der Natur in neuem Gewand
Spieß, K., Römer, L. & Scheibel, T.
GIT Labor-Fachzeitschrift 11, 928-931

Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions
Dong, J., Bloom, J.D., Goncharov, V., Chattopadhyay, M., Millhauser, G.L., Lynn, D.G.,
Scheibel, T. & Lindquist, S.
J. Biol. Chem. 282, 34204-34212

Structural changes of thin films from recombinant spider silk proteins upon post treatment
Metwalli, E., Slotta, U., Darko, C., Roth, S., Scheibel, T. & Papadakis, C.
Appl. Phys. A 89, 655-661

Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media
Schmidt, M., Romer, L., Strehle, M. & Scheibel, T.
Biotechnol. Lett. 29, 1741-1744

Engineered microcapsules made of reconstituted spider silk
Hermanson, K., Huemmerich, D., Scheibel, T. & Bausch, A.
Adv. Mater. 19, 1810-1815

The amphiphilic properties of spider silks are important for spinning
Exler, J., Huemmerich, D. & Scheibel, T.
Angew. Chem. Int. Edit. 46, 3559-3562

Spider silk and amyloid fibrils – a structural comparison
Slotta, U., Hess, S., Spieß, K., Stromer, T., Serpell, L. & Scheibel, T.
Macromol. Biosciences 7, 183-188

Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1
Lodderstedt, G., Hess, S., Hause, G., Scheuermann, T., Scheibel, T. & Schwarz, E.
FEBS Lett. 274, 346-355

Grundlagen für neue Materialien – Seidenproteine
Römer, L, & Scheibel, T.
Chemie i. u. Zeit 41, 306-314

Biotechnological production of spider silk proteins enables new applications
Vendrely, C. & Scheibel, T.
Macromol. Biosciences 7, 401-409
Buchkapitel/Book chapters

Herstellung und Anwendung von Spinnenseide
Roemer, L. & Scheibel, T.
In: A. Kesel, D. Zehren (eds.): Bionik: Patente aus der Natur,. 3. Bionik Konferenz 2006, Bremen, pp. 130-139

Folding, self-assembly and conformational switches of proteins.
Sen Gupta, S. & Scheibel, T.
In: J. Zbilut & T. Scheibel (eds.): Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, pp. 1-33
Nova Publisher


Structural analysis of films cast from recombinant spider silk proteins
Slotta, U. Tammer, M., Kremer, F., Koelsch, P. & Scheibel, T.
Supramol. Chem. 18, 465-471

Rheological characterisation of recombinant spider silk nanofiber networks
Rammensee, S., Huemmerich, D., Hermanson, K., Scheibel, T. & Bausch, A.
Appl. Phys. A 82, 261-264

Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm
Junghans, F., Conrad, U., Scheibel, T., Heilmann, A. & Spohn, U.
Appl. Phys. A 82, 253-260
Statistical approaches for investigating silk properties
Zbilut, J.P., Scheibel, T., Huemmerich, D., Webber, C.L., Colafranceschi, M. & Giuliani, A.
Appl. Phys. A 82, 243-251
Processing and modification of films made from recombinant spider silk proteins
Huemmerich, D., Slotta, U. & Scheibel, T.
Appl. Phys. A 82, 219-222
Editorial: Silk–a biomaterial with several facets
Scheibel, T.
Appl. Phys. A 82, 191-192
Buchkapitel/Book chapters
Protein Aggregation as a Cause for Disease
Scheibel, T. & Buchner, J.
In: M. Gaestel (ed.):Molecular Chaperones in Health and Disease; Handbook of Experimental Pharmacology 172, pp. 199-219
Springer Berlin Heidelberg

Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms
Vendrely, C. & Scheibel, T.
In: B.V. Doupher (ed.): Trends in Prion research, pp. 251-284
Nova Publisher


Spatial stochastic resonance in protein hydrophobicity
Zbilut, J.P., Scheibel, T., Huemmerich, D., Webber, C.L., Colafranceschi, M. & Giuliani, A.
Phys. Lett. A 346, 33-41

Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment
Junger, A., Kaufmann, D. & Scheibel, T.
Macromol. Biosciences 5, 494-501


Protein fibers as performance proteins: new technologies and applications
Scheibel, T.
Curr. Opin. Biotech. 16, 427-433

Buchkapitel/Book chapters

Methods to study fibril formation
Scheibel, T. & Serpell, L.
In: J. Buchner & T. Kiefhaber (eds.):Handbook of protein folding Vol. II, pp. 193-249
Wiley VHC, Weinheim



Novel assembly properties of recombinant spider dragline silk protein
Huemmerich, D., Scheibel, T., Vollrath, F., Cohen, S., Gat, U. & Ittah, S.
Curr. Biol. 14, 2070-2074

Primary structure elements of dragline silks and their contribution to protein solubility and assembly
Huemmerich, D., Helsen, C.W., Oschmann, J., Rudolph, R. & Scheibel, T.
Biochemistry 43, 13604-13612

The elongation of yeast prion fibers involves separable steps of association and conversion
Scheibel, T., Bloom, J. & Lindquist, S.
Proc. Natl. Acad. Sci. USA 101, 2287-2292

Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Scheibel, T.
Microbial Cell Factories 3, 14-21

Book Review:

Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease – Principles and Methods. Bross, P. & Gregerson, N. (eds), Humana Press, Towota 2003. 318 pp.
Scheibel, T. & Buchner, J.
ChemBioChem. 5, 1153-1154

Amyloid formation of a yeast prion determinant
Scheibel, T.
J. Mol. Neurosci. 23, 13-22


Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition
Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X.-M., Jaeger, H. & Lindquist, S.
Proc. Natl. Acad. Sci. USA 100, 4527-4532


Buchkapitel/Book chapters

[PSI]-chotic yeasts: protein-only inheritance of a yeast prion
Scheibel, T.
In: G. Pandalai (ed.): Rec. Res. in Mol. Microbiol. 1, pp. 71-89
Hindustan Publ. Corp., Delhi


The role of conformational flexibility in amyloid propagation by the yeast prion-protein Sup35
Scheibel, T. & Lindquist, S.
Nat. Struct. Biol. 8, 958-963

Factors, which stabilize the structure of the prion-determining region (NM) of yeast Sup35p inhibit fiber formation
Scheibel, T., Kowal, A. & Lindquist, S.
Nova Acta Leopoldina Suppl. 16, 121-122

Bi-directional amyloid fiber growth for a yeast prion determinant
Scheibel, T., Kowal, A., Bloom, J. & Lindquist, S.
Curr. Biol.11, 366-369

Contribution of N- and C-terminal domains to the function of Hsp90 in Saccharomyces cerevisiae
Scheibel, T., Weikl, T., Rimerman, R., Smith, D., Lindquist, S. & Buchner, J.
Mol. Microbiol. 34, 701-713

The charged region of Hsp90 modulates the function of the N-terminal domain
Scheibel, T., Siegmund, H. I., Jaenicke, R., Ganz, P., Lilie, H. & Buchner, J.
Proc. Natl. Acad. Sci. USA 96, 1297-1302


Folding and association of beta-galactosidase
Nichtl, A., Buchner, J., Jaenicke, R., Rudolph, R. & Scheibel, T.
J. Mol. Biol. 282, 1083-1091

Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence
Scheibel, T., Weikl, T. & Buchner, J.
Proc. Natl. Acad. Sci. USA 95, 1495-1499

The Hsp90 complex -- a super-chaperone machine as a novel drug target
Scheibel, T. & Buchner, J.
Biochem. Pharmacol. 56, 675-682


S. cerevisiae and sulfur: a unique way to deal with the environment
Scheibel, T., Bell, S. & Walke, S.
FASEB J.11, 917-921

ATP-binding properties of human Hsp90
Scheibel, T., Neuhofen, S., Weikl, T., Mayr, C., Reinstein, J., Vogel, P. D. & Buchner, J.
J. Biol. Chem. 272, 18608-18613

Buchkapitel/Book chapters

Hsp90 proteins: the Hsp90 family
Scheibel, T. & Buchner J.
In: M. J. Gething (ed.): Guidebook to molecular chaperones and protein-folding catalysts, pp. 147-151 Oxford University Press, Oxford


Assessment of the ATP-binding properties of Hsp90
Jakob, U., Scheibel, T. Bose, S., Reinstein, J. & Buchner, J.
J. Biol. Chem. 271, 10035-10041