Biofabrication processing / 3D printing
The focus of the research group biofabrication and 3D-printing is on the one hand the analysis of suitable structural proteins to be used as scaffolds for tissue engineering approaches, and on the other hand the development of new, cell-friendly bioinks. In particular, recombinant spider silk proteins are modified dependent on their application and are processed into films, hydrogels, foams, non-woven meshes and nanofibers with defined structure and controlled topography.
Biofabrication is an emerging field in the area of biomaterials, which aims to generate 3D biocompatible constructs using natural materials as building blocks in combination with cells. This approach requires materials recapitulating native tissue properties like in bone, ligament, skin and nerve regeneration. Defined 3D structures, tissue-related hierarchical morphology, and adjusted biochemical composition are important characteristics of a scaffold. To achive this, 3D bioprinting (3DBP) shows particular promise due to precise positioning of scaffold components in three dimensions. Therefore, suitable bioinks are necessary, which are on the one hand printable and on the other hand cytocompatible. Hence, for instance spider silk, collagen, hyaluronic acid, cellulose and alginate are used.



Research Projects

Arias Jaramillo, Angela Maria (M.Sc.)
angela.arias-jaramillo(.at)bm.uni-bayreuth.de
0921-55 6714
Tissue engineering has been largely studied in recent years since and has recently profited from the advances within 3D-bioprinting regarding printing materials, deposition platforms and design software. Despite of these advancements, regenerated tissues so far have encountered the problem of poor vascularization during generation of thick tissues, which leads to tissue necrosis. Therefore, efforts have focused on the generation of vascular constructs by means of multiple technologies. This project aims to generate recombinant spider silk protein (eADF4 (C16)) based, 3D-printed vascular constructs with a cellular multilayer and hierarchical structure (macrovessels, microvessels and capillaries) after in-vivo static (incubation) and dynamic (media perfusion) culturing.

Koeck, Kim (M.Sc.)
kim.koeck(.at.)bm.uni-bayreuth.de
0921-55 6715
Tissue engineering of fibrous tissues of the musculoskeletal system, such as tendon, presents a major challenge for biomedical research due to its complex architecture and mechanical behavior. Natural healing of tendon is limited due to a low number of cells and its avascularity. In healing, a hierarchically organized structure is replaced by a disorganized fibrous scar tissue with inferior mechanical properties. To address this problem, fabric-like braided polymer ropes are used as partial tendon replacements, however, these tend to be inferior due to a lack of biological function as well as lack of material/mechanical gradients. This projects aims to create a total tendon replacement based on a gradient fiber-reinforced composite by combining a textile approach with abio-inspired materials approach. The tendon-like replacement tissue will be evaluated based on the mechanical stability and biocompatibility.

Döbl, Annika (M.Sc.)
annika.doebl(.at.)bm.uni-bayreuth.de
0921-55 6711
So far, preclinical tumor research for identification of possible drugs is based on 2D cell culture methods and xenograft mice. 3D tumor cell cultivation techniques will expand the tools of in vitro cancer models, providing additional insights into cancerous tissue analysis. Hydrogels made of recombinant spider silk proteins are a well-suited material for 3D cell culture due to their suitable mechanical and biochemical properties, and they can be used as bioink to create cell-laden constructs using 3D-printing technologies. The project objective is to develop a 3D in vitro tumor model. |

Trossmann, Vanessa (M.Sc.)
vanessa.trossmann(.at.)bm.uni-bayreuth.de
0921-55 6710
Due to its unique mechanical and biochemical properties spider silk is in the focus of research since decades. Spider silk proteins are biodegradable, biocompatible and show no immune reaction in the human body, thereby representing a suitable material for biomedical applications. The development of recombinant technologies, inspired by the natural occurring gene sequences of the European garden spider Araneus diadematus, enable the biotechnological production of spider silk proteins in high-yields. They can be processed into several different morphologies, such as fibers, films, hydrogels, foams, nonwovens and particles, leading to diverse potential applications. With respect to tissue engineering and regenerative medicine, specific cell adhesion is a decisive factor. Since cell attachment to unmodified silk protein is often low, it is sometimes necessary to develop proteins including cell-interacting ligands. The project objective is thus to modify and functionalize biocompatible spider silk scaffolds for guided cell-substrate-interaction by using genetic or chemical coupling and varying processing methods.


Neubauer, Vanessa (M.Sc.)
vanessa.neubauer(.at.)bm.uni-bayreuth.de
0921-55 6705
Among the great challenges of modern medicine is the regeneration of tissues. One promising approach is the manufacturing of tailor-made tissue scaffolds for regenerative medical approaches, known as tissue engineering. Spider silk is a suitable candidate for biomaterial applications since it shows no immunogenicity, good biocompatibility and biodegradability. By processing recombinant spider silk proteins into hydrogels, 3D scaffolds can be printed for biomedical applications. In this context, specialized scaffold preparation for tissue regeneration applications such as gradient materials for tendon replacement are in the focus. This also includes oriented biomineralization of the gradient material similar to the natural blueprint.
Publications
,
Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist S
,Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition
Proc. Natl. Acad. Sci. USA 100, 4527-4532
,
Amyloid formation of a yeast prion determinant
J. Mol. Neurosci. 23, 13-22
Buchner J
,Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease – Principles and Methods.
ChemBioChem. 5, 1153-1154
,
Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Microbial Cell Factories 3, 14-21
Bloom J, Lindquist SL
,The elongation of yeast prion fibers involves separable steps of association and conversion
Proc. Natl. Acad. Sci. USA 101, 2287-2292
Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R,
,Primary structure elements of dragline silks and their contribution to protein solubility and assembly
Biochemistry 43, 13604-13612
Huemmerich D, Vollrath F, Cohen S, Gat U, Ittah S
,Novel assembly properties of recombinant spider dragline silk protein
Curr. Biol. 14, 2070-2074
Serpell L
,Methods to study fibril formation
In: J. Buchner & T. Kiefhaber (eds.):Handbook of protein folding Vol. II, pp. 193-249 Wiley VHC, Weinheim
,
Protein fibers as performance proteins: new technologies and applications
Curr. Opin. Biotech. 16, 427-433
Junger A, Kaufmann D
,Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment
Macromol. Biosciences 5, 494-501
Zbilut J.P, Huemmerich D, Webber C.L , Colafranceschi M, Giuliani A
,Spatial stochastic resonance in protein hydrophobicity
Phys. Lett. A 346, 33-41
Vendrely C
,Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms
In: B.V. Doupher (ed.): Trends in Prion research, pp. 251-284 Nova Publisher
Buchner J
,Protein Aggregation as a Cause for Disease
,
Editorial: Silk–a biomaterial with several facets
Appl. Phys. A 82, 191-192
Huemmerich D, Slotta U
,Processing and modification of films made from recombinant spider silk proteins
Appl. Phys. A 82, 219-222
Zbilut J.P, Huemmerich D, Webber, C.L, Colafranceschi M, Giuliani A.
,Statistical approaches for investigating silk properties
Rammensee S, Huemmerich D, Hermanson K, Bausch A.
,Rheological characterisation of recombinant spider silk nanofiber networks
Appl. Phys. A 82, 261-264
Slotta U, Tammer M, Kremer F, Koelsch P
,Structural analysis of films cast from recombinant spider silk proteins
Supramol. Chem. 18, 465-471
Sen Gupta, Sayam
,Folding, self-assembly and conformational switches of proteins.
.Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, pp. 1-33 Nova Publisher
Roemer, L
,Herstellung und Anwendung von Spinnenseide
A. Kesel, D. Zehren (eds.): Bionik: Patente aus der Natur,. 3. Bionik Konferenz 2006, Bremen, pp. 130-139
Vendrely C
,Biotechnological production of spider silk proteins enables new applications
Macromol. Biosciences 7, 401-409
Römer L
,Grundlagen für neue Materialien – Seidenproteine
Chemie i. u. Zeit 41, 306-314
Lodderstedt G, Hess S, Hause G, Scheuermann T, Schwarz E.
,Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1
Slotta U, Hess S, Spiess K, Stromer T, Serpell L
,Spider silk and amyloid fibrils – a structural comparison
Macromol. Biosciences 7, 183-188
Exler JH, Hümmerich D
,The amphiphilic properties of spider silks are important for spinning
Angew. Chem. Int. Edit. 46, 3559-3562
K. D. Hermanson , D. Huemmerich, A. R. Bausch
,Engineered microcapsules made of reconstituted spider silk
Adv. Mater. 19, 1810-1815
Schmidt M , Romer L, Strehle M
,Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media
Biotechnol. Lett. 29, 1741-1744
E. Metwalli, U. Slotta, C. Darko SV. Roth, C.M. Papadakis
,Structural changes of thin films from recombinant spider silk proteins upon post treatment
Appl. Phys. A 89, 655-661
Jijun Dong , Jesse D. Bloom , Vladimir Goncharov , Madhuri Chattopadhyay , Glenn L. Millhauser, David G. Lynn ,and Susan Lindquist,
,Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions
Dr. Lin Römer , Kristina Spieß
,Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand
GIT Labor-Fachzeitschrift 11, 928-931
Hess S, Lindquist S
,Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM
EMBO Rep. 8,1196-1201
Kevin D. Hermanson , Markus B. Harasim , Andreas R. Bausch
,Permeability of silk microcapsules made by the interfacial adsorption of protein
Phys. Chem. Chem. Phys. 9, 6442-6446
Römer L
,The Elaborate Structure of Spider Silk: Structure and Function of a Natural High Performance Fiber
T. Scheibel (ed.): Fibrous proteins Landes Biosciences, Austin
Vendrely C, Ackerschott C, Römer L
,Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials
E. Gazit & R. Nussinov (eds): Methods in Molecular Biology. Nanostructure Design: Methods and Protocols 474, pp. 3-14
Lammel A., Keerl D, Römer, L
,Proteins: Polymers of natural origin
J. Hu, (ed.), Biomaterials: Chemistry and Physics, pp. 1-22
Weidenauer U
,Spinnenseidenproteine als pharmazeutischer Hilfsstoff
Lin Römer
,Spinnen wie die Spinnen
Nachrichten a. d. Chem. 56, 516-519
John G.Hardy , Lin M.Römer
,Polymeric materials based on silk proteins
Polymer 49, 4309-4327
Krammer C, , Suhre MH, Kremmer E, Diemer C, Hess S, Schätzl HM, Vorberg I.
,Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells
FASEB J. 22, 762-773
Geisler M, Pirzer T, Ackerschott C, Lud S, Garrido J, Hugel T.
,Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study
Langmuir 24, 1350-1355
Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud SQ, Garrido JA, Hugel T, Netz RR.
,Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces
Proc. Natl. Acad. Sci. USA. 105, 2842-2847
S. Rammensee, U. Slotta, A. R. Bausch
,Assembly mechanism of recombinant spider silk proteins
Proc. Natl. Acad. Sci. USA. 105, 6590-6595
Lammel A, Schwab M, Slotta U, Winter G,
,Processing conditions for spider silk microsphere formation
ChemSusChem 5, 413-416
Slotta UK, Rammensee S, Gorb S
,An engineered spider silk protein forms microspheres
Angew. Chem. Int. Edit. 47, 4592-459
Burghard Liebmann, Daniel Hümmerich, Marcus Fehr
,Formulation of poorly water-soluble substances using self-assembling spider silk protein
Colloids and Surfaces A: Physicochem. Eng. Aspects 331, 126-132
Heim M, Keerl D,
,Spider Silk: From Soluble Protein to Extraordinary Fibers
Angew. Chem. Int. Edit. 48, 2 – 15 doi: 10.1002/anie.200803341
,
Spinnenseide: Was Spiderman wissen sollte
Römer L
,The elaborate structure of spider silk: Structure and function of a natural high performance fiber
Prion 2, 154-161
Heim M, Römer L
,Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein
Chem. Soc. Rev. 39, 156–164 doi: 10.1039/b813273a
Grunwald I, Rischka K, Kast SM,
, ,Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein
Phil. Trans. Roy. Soc. London: A 367, 1727-1747 doi:10.1098/rsta.2009.0012
Hardy JG
,Production and processing of spider silk proteins
J. Polymer Sci.: Part A: Polymer Chem. 47, 3957–3963 doi: 10.1002/pola.23484
Hardy, J.G.
,Silk-inspired polymers and proteins
Biochem. Soc. Trans. 37, 677–681 doi:10.1042/BST0370677
Andrew M. Smith
,Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135 doi: 10.1002/macp.200900420
Anja Hagenau Holger A. Scheidt Louise Serpell Daniel Huster Thomas Scheibe
,Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis
Macromol. Biosciences 9, 162-168 doi: 10.1002/mabi.200800271
Krammer C, Kryndushkin D, Suhre MH, Kremmer E, Hofmann A, Pfeifer A, Scheibel T, Wickner RB, Schätzl HM, Vorberg I.
,The yeast Sup35NM domain propagates as a prion in mammalian cells
Proc. Natl. Acad. Sci. USA 106, 462-467 doi: 10.1073/pnas.0811571106
Pirzer T, Geisler M, Hugel T.
,Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
Physical Biol. J. 6, 025004 (8pp) doi:10.1088/1478-3975/6/2/025004
Cyrille VézyKevin D. HermansonThomas ScheibelAndreas R. Bausch
,Interfacial rheological properties of recombinant spider-silk proteins
Biointerphases 4, 43-46 doi: 10.1116/1.317493
Suhre MH, Hess S, Golser AV
,Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM
J. Inorg. Biochem. 120, 1711-1720 doi:10.1016/j.jinorgbio.2009.09.021
Heim M, Römer L
,Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins
Chem. Soc. Rev. 39, 156–164 doi: 10.1039/b813273a
Leal-Egaña A
,Silk-based materials for biomedical applications
Biotechnol. Appl. Biochem. 55, 155–167 doi:10.1042/BA20090229
Hardy, J.G.
,Composite materials based on silk proteins
Progr. Polymer Sci. 35, 1093-1115 doi:10.1016/j.progpolymsci.2010.04.00
Spiess K, Lammel A
,Recombinant spider silk proteins for applications in biomaterials
Macromol. Biosciences 10 (9), 998-1007 doi: 10.1002/mabi.201000071
,
Advanced Biomaterials
Macromol. Biosciences 10, 674 doi: 10.1002/mabi.201000195
,
Spider silk from nature to bio-inspired materials
Chem Fiber Int 3, 15-16
Heim M, Ackerschott CB
,Characterization of recombinantly produced spider flagelliform silk domains
J. Struct. Biol. 170, 420–425 doi: 10.1016/j.jsb.2009.12.025
Eisoldt L1, Hardy JG, Heim M
,J. Struct. Biol. 170, 413–419 doi: 10.1016/j.jsb.2009.12.027
Anja Hagenau
,Towards the recombinant production of mussel byssal collagens
J. Adhesion 86, 10-24 doi: 10.1080/0021846090341770
Lammel AS1, Hu X, Park SH, Kaplan DL
,Controlling silk fibroin particle features for drug delivery
Biomaterials 31, 4583-4591 doi: 10.1016/j. biomaterials.2010.02.024
Franz Hagn, Lukas Eisoldt, John G. Hardy, Charlotte Vendrely, Murray Coles
,A conserved spider silk domain acts as a molecular switch that controls fibre assembly
Nature 365, 239-242 doi: 10.1038/nature08936
David Keerl, John George Hardy
,Biomimetic spinning of recombinant silk proteins
Mater. Res. Soc. Symp. Proc. 1239, VV07-20
Kristina Spieß, Stefanie Wohlrab
,Structural characterization and functionalization of engineered spider silk films
Soft Matter 6, 4168–4174 doi: 10.1039/b927267d
Andrew Smith
, ,Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber
Lukas Eisoldt, Andrew Smith
,Decoding the secrets of spider silk
Materials Today 14, 80–86
Kristina Spiess Andreas Lammel
,Recombinant spider silk proteins for applications in biomaterials
Best of Macros 2011, S32-S41 doi: 10.1002/mabi.201000071
Andrew Smith
, ,Recombinant spider silks – biopolymers with potential for future applications
Polymers 3, 640–661 doi:10.3390/polym3010640
Dr. Franz Hagn, Christopher Thamm, Prof. Dr. Horst Kessler
,pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation
Angew. Chem. Int. Ed. 50, 310-313 doi: 10.1002/anie.201003795
Lammel A, Schwab M, Hofer M, Winter G
,Recombinant spider silk particles as drug delivery vehicles
Biomaterials 32, 2233–2240 doi: 10.1016/j.biomaterials.2010.11.060
Anja Hagenaua, Periklis Papadopoulos, FriedrichKremer
,Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads
J. Structural Biol. 175, 339-347 doi.org/10.1016/j.jsb.2011.05.016
Kristin Schacht
,Controlled hydrogel formation of a recombinant spider silk protein
Biomacromolecules 12, 2488–2495 doi:10.1021/bm200154k
Kristina Spiess, Roxana Ene, Caroline D. Keenan, Jürgen Senker, Friedrich Kremerb
,Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films
J. Mater. Chem. 21, 13594-13604 doi: 10.1039/C1JM11700A
Slotta, U., Spieß, K
,Spider Silk
The Functional Fold. Useful Amyloid Structures in Nature, pp. 73-90 Pan Stanford Publishing, Singapore
Lukas Eisoldt Christopher Thamm
,The role of terminal domains during storage and assembly of spider silk proteins
Biopolymers 97, 355-361 doi: 10.1002/bip.22006
Kai U. Claussen , Thomas Scheibel , Hans‐Werner Schmidt, Reiner Giesa
,Polymer gradient materials: can nature teach us new tricks?
Macromol. Mater. Eng. 297, 938–957 doi: 10.1002/mame.201200032
Claussen KU, Giesa R, Schmidt HW.
,Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads
Macromol. Rapid Commun. 33, 206-211 doi: 10.1002/marc.201100620
Bluem C
,Control of drug loading and release properties of spider silk sub-microparticles
BioNanoSci. 2, 67-74 doi: 10.1007/s12668-012-0036-7
Aldo Leal‐Egaña, Gregor Lang, Carolin Mauerer, Jasmin Wickinghoff, Michael Weber, Stefan Geimer
,Interactions of fibroblasts with different morphologies made of an engineered spider silk protein
Adv. Eng. Mater. 14, B67-B75 10.1002/adem.20118007
Keerl D
,Characterization of natural and biomimetic spider silk fibers
Bioinspired, Biomimetic and Nanobiomaterials (BBN) 1, 83-94 doi: 10.1680/bbn.11.00016
bauer F
,Artificial egg stalks made of a recombinantly produced lacewing silk protein
Ang. Chemie Intl. Edit. 124, 6627-6630 doi: 10.1002/anie.201200591
Aldo Leal-Egañaa
,Interactions of cells with silk surfaces
J. Mater. Chem. 22, 14330-14336 doi: 10.1039/c2jm31174g
Stefanie Wohlrab, Susanne Müller, Stefanie Neubauer,Horst Kessler, Aldo Leal-Egaña
, ,Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
Biomaterials 33, 6650-6659 doi: 10.1016/j.biomaterials.2012.05.069
Seth L. Young, Maneesh Gupta, Christoph Hanske, Andreas Fery, Vladimir V. Tsukruk
,Utilizing conformational changes for patterning thin films of recombinant spider silk proteins
Biomacromolecules 13, 3189-3199 doi: 10.1021/bm300964h
Stefanie Wohlrab, Kristina Spießa
,Varying surface hydrophobicities of coatings made of recombinant spider silk proteins
J. Mater. Chem. 22, 22050-22054 doi: 10.1039/c2jm35075k
Bauer F, Bertinetti L, Masic A,
,Dependence of mechanical properties of lacewing egg stalks on relative humidity
Biomacromolecules. 13, 3730-3735 doi: 10.1021/bm301199d
Andrew Smith
,Hierarchical Protein Assemblies as a Basis for Materials
Architecture, pp. 256-281 RCS Publishing, Cambridge. doi: 10.1039/9781849737555-00256
Lauterbach A.Y.,
,Determining the Environmental Benefit of Artificial Spider Silk Products
CTSI-Cleantech 2013, 108-111 ISBN: 978-1-4822-0586-2
Stefanie Wohlrab, Christopher Thamm
,The Power of Recombinant Spider Silk Proteins
doi: 10.1007/978-94-007-7119-210
AnielaHeidebrecht
,Recombinant Production of Spider Silk Proteins
Adv. Appl. Microbiol. 82, 115-153 doi: 10.1016/B978-0-12-407679-2.00004-1
Eileen S. Lintz
,Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers
Adv. Funct. Mater. 23, 4467–4482 doi: 10.1002/adfm.201300589
,
Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit
Chemie & More, 4, 3-5
Hofmann JP, Denner P, Nussbaum-Krammer C , Kuhn PH, Suhre MH, Lichtenthaler SF, Schätzl HM, Bano D, Vorberg IM.
,Cell-to-cell propagation of infectious cytosolic protein aggregates
PNAS 110, 5951–5956 doi: 10.1073/pnas.1217321110
Gregor Lang, S Jockish
,Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
J. Vis. Exp. 75, e50492 (link) doi: 10.3791/50492
Claussen KU, Lintz ES, Giesa R, Schmidt HW
,Protein gradient films of fibroin and gelatine
Macromol. BioSci. 13, 1396–1403 doi: 10.1002/mabi.201300221
John G. Hardy, Aldo Leal‐Egaña
,Engineered spider silk protein-based composites for drug delivery
Macromol. BioSci. 13, 1431–1437 doi: 10.1002/mabi.201300233
Martin P. Neubauer, Claudia Blüm,Elisa Agostini, Julia Engert, Andreas Fery
,Micromechanical characterization of spider silk particles
Biomater. Sci. 1, 1160-1165 doi: 10.1039/C3BM60108K
Nicolas Helfricht, Maria Klug, Andreas Mark,Volodymyr Kuznetsov, Claudia Blüm,Georg Papastavrou
,Surface properties of spider silk particles in solution
Biomater. Sci. 1, 1166-1171 doi: 10.1039/C3BM60109A
Felix Bauer, Stefanie Wohlrab
,Controllable cell adhesion, growth and orientation on layered silk protein films
Biomater. Sci. 1, 1244-1249 doi: 10.1039/c3bm60114e
Claudia Blüm, Alfons Nichtl
,Spider silk capsules as protective reaction containers for enzymes
Adv. Funct. Mater. 24, 763–768 doi: 10.1002/adfm.201302100
Heim M, Elsner MB
,Lipid-specific ß-sheet formation in a mussel byssus protein domain
Biomacromolecules 14, 3238-45 doi: 10.1021/bm400860y
David Keerl
,Rheological characterization of silk solutions
Green Materials 2, 11 –23 doi: 10.1680/gmat.13.00009
Neuenfeldt M,
,Silks From Insects – From Natural Diversity to Application
In: K. H. Hoffmann (ed): Insect Molecular Biology and Ecology. CRC Press ISBN 9781482231885
,
Die Natur als Vorbild für bioinspirierte Materialien der Zukunft
Anja Hagenau, Michael H.Suhre
,Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels
Progr. Polym. Sci. 39, 1564-1583 doi: 10.1016/j.progpolymsci.2014.02.007
Schacht K
,Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
Curr. Opin. Biotechnol. 29, 62-69 doi: 10.1016/j.copbio.2014.02.015
Dr. Gregor Lang
,Multifunktionale Spinnenseide – ein vielversprechender Werkstoff
MaschinenMarkt 26, 36-39
Christian B. Borkner†, Martina B. Elsner
,Coatings and films made of silk proteins
ACS Appl. Mater. Interface. 29, 62-69 doi: 10.1021/am5008479
Cordt Zollfrank,Heike Seitz, Nahum Travitzky
,Bioinspired materials engineering
Ullmann’s Encyclopedia of Industrial Chemistry doi: 10.1002/14356007.s04_s01
, ,
Self-assembly of nucleic acids, silk and hybrid materials thereof
J. Phys. Condens. Matter 26, 503102 doi: 10.1088/0953-8984/26/50/503102
Heidebrecht A
,Spionik – Biotech Spinnenseide und ihre Einsatzgebiete
GIT Bioforum 2, 20-22
, ,
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
ACS Nano 8, 1342-1349 doi: 10.1021/nn404916f
Suhre MH, Gertz M, Steegborn C
,Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Nat. Comm., 5, 3392 doi: 10.1038/ncomms4392
Suhre MH, Gertz M, Steegborn C,
,Structural and functional features of a collagen-binding matrix protein from the mussel byssus
J. Struct. Biol. 186, 75-85 doi: 10.1016/j.jsb.2014.02.013
Hardy JG, Pfaff A, Leal-Egaña A, Müller AH,
,Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion
Macromol. Biosci., 14, 936-42 doi: 10.1002/mabi.201400020
Michael H. Suhre, Clemens Steegborn, Melanie Gertzb
,Crystallization and preliminary X-ray diffraction analysis os PTMP1
Acta Crystallographica Section F 70, 769-772 doi: 10.1107/S2053230X14006165
Magdeburg M
, ,Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
J. Struct. Biol., 186, 431-437 doi: 10.1016/j.jsb.2014.03.010
Markus Drechsler
, ,Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Nano Lett.., 14, 3999−4004 doi: 10.1021/nl501412k
Anja Yvonne Lauterbach
,Life cycle assessment of spider silk nonwoven meshes in an air filtration device
Green Materials., 3: 15-24 doi: 10.1680/gmat.14.00011
R. H. Zeplin, A.-K. Berninger, N. C. Maksimovikj, P. van Gelder, H. Walles
,Verbesserung der Biokompatibilität von Silikonimplantaten
Handchir. Mikrochir. Plast. Chir., 46: 336-41 doi: 10.1055/s-0034-1395558
,
Engineering of rec SSP allows defined drug uptake and release
TechConnect Briefs 2015: Biotech, Biomaterials and Biomedical CRC Press
Doblhofe E, Heidebrecht A,
,To spin or not to spin: spider silk fibers and more
Appl. Microbiol. Biotechnol. 99: 9361-9380 doi: 10.1007/s00253-015-6948-8
Tomasz Jungst, Willi Smolan, Kristin Schacht, Jürgen Groll
,Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev.. 99: 9361-9380 doi: 10.1021/acs.chemrev.5b00303
,
Vom Spinnennetz zur High-Tech-Faser
Naturwiss. Rundschau.. 68: 524-525
Doblhofer E
,Engineering of recombinant spider silk proteins allows defined uptake and release of substances
J. Pharm. Sci, 104: 988-994 doi: 10.1002/jps.24300
Martina B. Elsner, Susanne Müller-Herrmann
, , ,Enhanced cellular uptake of engineered spider silk particles
Schacht K1, Jüngst T, Schweinlin M, Ewald A, Groll J
,Biofabrication of cell-loaded 3D spider silk constructs
Angew, Chem., 54: 2816–2820 doi: 10.1002/anie.201409846
Aniela Heidebrecht ,Lukas Eisoldt, Andreas Schmidt, Martha Geffers, Gregor Lang
, ,Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
Adv. Mater., 27: 2189–2194 doi: 10.1002/adma.201404234
Susanne Müller-Herrmann
,Enzymatic degradation of films, particles and non-woven meshes
ACS Biomater. Sci. Eng., 1: 247–259 doi: 10.1021/ab500147u
Andrew M. Smith, Sina Arndt
, ,Data for ion and seed dependent fibril assembly of a spidroin core domain
Data in Brief 4: 571–576 doi: 10.1016/j.dib.2015.07.023
Helmut Zahn, Anita Krasowski
,Silk
https://onlinelibrary.wiley.com/doi/10.1002/14356007.a24_095.pub2/otherversions
Thomas Scheibel, Jürgen Groll, Aldo R. Boccaccini, Tobias Zehnder, Tomasz Jungst, Kristin Schacht
,Zellgewebe aus dem Drucker
Nachrichten aus der Chemie 64: 13-16 doi: 10.1002/nadc.20164044385
Tomasz Jungst, Willi Smolan, Kristin Schacht, and Jürgen Groll
,Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev. 116: 1496-1539 doi: 10.1002/nadc.20164044385
, ,
Zukunftsfeld Bionik
UBT Spektrum, 1: 54 – 57
J. Bauer
,Die Schwarze Witwe und ihre Künste
UBT Aktuell, 2: 60 – 63
David L. Caplan
,Recombinant Silk Production in Bacteria
Reference Module in Materials Science and Engineering doi:10.1016/B978-0-12-803581-8.02274-8
Ling Peng, Shaohua Jiang, Maximilian Seuß, Andreas Fery, Gregor Lang, Seema Agarwal
,Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning
Macromol. Mater. Eng. 301: 48-55 doi: 10.1002/mame.20150021
Schaal D, Bauer J, Schweimer K, Rösch P, Schwarzinger S
,Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster
Biomol. NMR Assign. 10: 199-202 doi: 10.1007/s12104-016-9666-
Kristin Schacht, Jessica Vogt
,Foams made of engineered recombinant spider silk proteins
ACS Biomater. Sci. Eng. 2: 517-525 doi: 10.1021/acsbiomaterials.5b00483
Elise DeSimone, Kristin Schacht,
,Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins
Mater. Lett., 183: 101-104 doi: 10.1016/j:matlet.2016.07.044
Christian Haynl, Eddie Hofmann, Kiran Pawar, Stephan Förster
,Microfluidics-produced collagen fibers show extraordinary mechanical properties
Nano Lett. 2016, 16: 5917 – 5922 doi: 10.1021/acs.nanolett.6b02828
Christian B. Borkner, Stefanie Wohlrab, Gregor Lang
,Surface modification of polymeric biomaterials using recombinant spider silk proteins
ASC Biomat. Sci.Eng. 2017, 3: 767 – 775 doi: 10.1021/acsbiomaterials.6b00306
Martina B. Schierling, Elena Doblhofera
,Cellular uptake of drug loaded spider silk particles
Biomater. Sci. 2016, 4: 1515-1523 doi: 10.1039/c6bm00435k
Nicolas Helfricht, Elena Doblhofer‡, Jérôme F. L. Duval, Georg Papastavrou
,Colloidal properties of recombinant spider silk protein particles
J. Phys. Chem. C. 2016, 120, 18015 – 18027 doi: 10.1021/acs.jpcc.6b03957
Elena Doblhofer, Jasmin Schmid, Martin Rieß, Matthias Daab, Magdalena Suntinger, Christoph Habel, Christoph Hugenschmidt, Sabine Rosenfeldt, Josef Breu
, ,Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties
Appl. Mater. Interfaces 2016, 8: 25535 – 25543 doi: 10.1021/acsami.6b08287
Bauer J, Schaal D, Eisold L, Schweimer K, Schwarzinger S,
,https://www.nature.com/articles/srep34442
Sci. Rep. 6, 34442 doi: 10.1038/srep34442
Dr. Gregor Lang
, ,Properties of engineered and fabricated silks
Nicolas Helfricht, Elena Doblhofer, Vera Bieber, Petra Lommes, Volker Sieber, Georg Papastavrou
,Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement
Soft Matter 2017, 13: 578 – 589 doi: 10.1039/c6sm02326f
Gregor Lang, Benedikt R. Neugirg, Daniel Kluge, Andreas Fery
,Mechanical testing of engineered spider silk filaments
ACS Appl. Mater. Interfaces, 2017, 9: 892 – 900 doi: 10.1021/acsami.6b13093
Bauer J
,Conformational stability and interplay of N- and C-terminal domains
Biomacromolecules 2017, 18: 835 – 845 doi: 10.1021/acs.biomac.6b01713
Christopher Thamm
,Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)
Biomacromolecules 2017, 18: 1365 – 1372 doi: 10.1021/acs.biomac.7b00090
Neuenfeldt M,
,Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea
Bauer J
,Dimerzation of the conserved N-Terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain
Biomacromolecules,2017, 18: 2521 – 2528 doi: 10.1021/acs.biomac.7b00672
Thamm C, DeSimone E,
,Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing
Macromol. Biosci. 2017, in print doi: 10.1002/mabi201700141
Adrian V. Golsera
,Biotechnological production of the mussel byssus derived collagen preColD
RSC Adv., 2017, 7: 38273 – 38278 doi: 10.1039/c7ra04515h
Jana Petzold, Filip Touska, Katharina Zimmermann, Felix B. Engel
, ,Surface Features of Recombinant Spider Silk Protein eADF4(κ16)-Made Materials are Well-Suited for Cardiac Tissue Engineering
, ,
Applicability of biotechnologically produced insect silks
Zeitschrift für Naturforschung, 2017, 72 (9-10), 365-385 doi:10.1515/znc-2017-0050
Stephan Jokisch , Martin Neuenfeldt,
,Silk-Based Fine Dust Filters for Air Filtratio
Adv.Sustainable Syst, in print doi:10.1002/adsu.201700079
Anton AM, Heidebrecht A, Mahmood , Beiner M, Scheibel T, Kremer F
,Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk
Biomac, in print doi:10.1021/acs.biomac7b00990
Elise DeSimone, Kristin Schacht,
, ,Recombinant spider silk-based bioinks
Biofabrication 9, 4, (2017), 044104 doi: 10.1088/1758-5090
Vanessa J.Wicklein, Bernhard B.Singer,
, ,Nanoengineered biomaterials for corneal regeneration
In: Nanoengineered Biomaterials for Regenerative Medicine. Elsevier Inc. doi: 10.1016/B978-0-12-813355-2.00017-
Jokisch, S.
, ,Einsatz von Biomaterialien in Filtersystemen
In: Prototype Nature
, ,
Bio-inspirierte Materialien
MNU Journal 2018, 1, 4-10 ISSN: 0025-5866
, ,
Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge
MNU Journal 2018, 1, 4-10 ISSN: 0025-5866
Gregor Lang
, ,Silk nanofibril self-assembly versus electrospinning
WIREs Nanomed. Nanobiotechnol. 2018, e 1509 doi: 10.1002/wnan.1509
Haug, M., Reischl, B., Prölß, G., Pollmann, C., Buckert, T., Keidel, C., Schürmann, S., Hock, M., Rupitsch, S., Heckel, M., Pöschel, T., Haynl, C., Kiriaev, L, SI Head & Friedrich, O.
,The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials
Biosensors and Bioelectronics 2018, 102, 589-599 doi: 10.1016/j.bios.2017.12.003
Frank Mickoleit , Christian B. Borkner, Mauricio Toro-Nahuelpan, Denis S. Maier, Jürgen M. Plitzko, Dirk Schüler
, ,In vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides
Biomacromolecules, 19, 3, 962 – 972 doi: 10.1021/acs.biomac.7b01749
, ,
Biomimetic spider silk fibres: from vision to reality
The Biochemist, 2018, Vol. 40, No 1.
Elise DeSimone
, ,Biomedical Applications of Recombinant Silk-Based Materials
Adv.Mater., 2018, 30 doi: 10.1002 / adma.201704636
Eileen S. Lintz Christoph Neinhuis
,Altering Silk Film Surface Properties through Lotus-Like Mechanisms
Macromol.Mater.Eng., 2018,303, 4 doi: 10.1002/mame.201700637
Adrian V. Golser
,Routes towards Novel Collagen-Like Biomaterials
Fibers 2018, 6, 21 doi: 10.3390/fib6020021
Mette U. Anby, David Lafargue
, , ,Recombinant spider silk hydrogels for sustained release of biologicals
ACS Biomater., 2018,4, 1750 – 1759 doi: 10.1021/acsbiomaterials.8b00382
Lucke, M., Mottas, I., Herbst, T., Hotz, C., Römer, L., Schierling, M., Slotta, U., Spinetti, T., T., Winter, G., Bourquin, C. & Engert, J.
, ,Engineered spider silk hybrid particles as delivery system for peptide vaccines
Biomaterials 2018, 172, 105 – 115 doi: 10.1016/j.biomaterials.2018.04.008
Adrian V. Golser, Matthias Röber, Hans G. Börner
,Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces
Biomat, in print doi: 10.1021/ascbiomaterials.7b00583
Eddie Hofmann, Kilian Krüger, Christian Haynl, Thomas Scheibel, Martin Trebbind, Stephan Förster
,Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter contro
LabChip, 2018, 18, 2225-2234 doi: 10.1039/c8lc00304a
, ,
Recombinant production of mussel byssus inspired proteins
,
,Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b
Biomac. 2018,19, 3612 – 3619 doi: 10.1021/acs.biomac.8b00583
Kaveh Roshanbinfar, Lena Vogt, Boris Greber, Sebastian Diecke, Aldo R. Boccaccini , Felix B. Engel
,Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues
Adv. Funct.Mat., 2018, 28, 14 doi:10.1002/adfm.201803951
Hardy, J., Bertin, A., Torres-Rendon, J., Leal-Egana, A., Bauer, F., Walther, A., Cölfen, H., Schlaad, H.
, ,Facile Photochemical Modification of Silk Protein-Based Biomaterials
Bacromol.Biosci., 2018, 18, 11 doi: 10.1021/mabi.201800216
Molina, A.
, ,Nanoscale patterning of surfacesvia DNA directed spider silk assembly
Biomacromolecules, 2019, in print doi: 10.1021/acs.biomac.8b01333
Zha, H.R., Delparastan, P., Fink D. T., Bauer, J., Messersmith, P. B.
,Universal nanothin silk coatings via controlled spidroin self-assembly
Biomaterials Science , 2019, in print doi:10.1039/C8BM04486A
Zha, H.R., Delparastan, P., Fink D. T., Bauer, J., Messersmith, P. B.
,Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of (Gly-Pro-Pro)7 collagen mimetic peptdes
Europolymj. , 2019, 112, 301 – 305 doi:10.1016/j.europolymj.2018.12.045
Krüger, St., Taubert, A.
, , ,Spider-MAEN_recombinant spider silk based hybrid materials
Bioinsp/Biomimetic/Nanobiomaterials, in print doi:10.1680/jbibn.18.00007
, Michael H. Suhre
,A mussel polyphenol oxidase-like proein shows thiol-mediated antioxidant_supplement
Europolymj. , 2019, Vol. 113, 305 – 31 doi:10.1016/j.europolymj.2019.01.069
Mohrand, M.
, ,Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.
Bioconjugate Chemistry doi: 10.1021/acs.bioconjchem.1027b00759.
,
Herstellung und Anwendung von Spinnenseide
In: A. Kesel, D. Zehren (eds.): Bionik: Patente aus der Natur,. 3. Bionik Konferenz 2006, Bremen, pp. 130-139
Andrew M. Smith
,Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135 doi: 10.1002/macp.200900420
Kristina Spieß, Stefanie Wohlrab
,Structural characterization and functionalization of engineered spider silk films
Soft Matter 6, 4168–4174 doi: 10.1039/b927267d
Gregor Lang, Heike Herold
,Properties of engineered and fabricated silks
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted …In: Subcell. Biochem. 82:527-573
Elise DeSimone,Alexandra Pellert , Kristin Schacht
,Recombinant spider silk-based bioinks
Biofabrication 9, 4, (2017), 044104 doi: 10.1088/1758-5090
Wang J
,Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b
The underwater adhesion of marine mussels is a fascinating example of how proteinaceous adhesives, although water-soluble to begin with, can be used in seawater. Biomac. 2018, inprint doi: 10.1021/acs.biomac.8b00583
Kaveh Roshanbinfar Lena Vogt Boris Greber Sebastian Diecke Aldo R. Boccaccini ,Felix B. Engel
,Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues
Cardiac tissue engineering is a promising strategy to treat heart failure. Yet, several issues remain to be resolved including the prevention of arrhythmia …
,
Facile Photochemical Modification of Silk Protein-Based Biomaterials
Silk protein-based materials show promise for application as biomaterials for tissue engineering.