Prof. Dr. Scheibel, Thomas

Open Resume

Faserherstellung

Die Herstellung von funktionalen und leistungsstarken Fasermaterialien auf Basis von Proteinen ist Fokus dieser Forschungsgruppe. Da der Verarbeitungsprozess zum Material einen hohen Einfluss auf dessen spätere Eigenschaften hat, steht die Anpassung und Weiterentwicklung der Verarbeitungsmethoden neben der Auswahl geeigneter Ausgangsstoffe im Mittelpunkt unserer Forschung. Zur Verarbeitung werden die Technologien Nass-, Elektro- und biomimetisches Spinnen sowie Mikrofluidik eingesetzt, um Fasern, Garne und Vliese herzustellen. Diese können alleinstehend oder in Verbundmaterialien (beispielsweise in 3D-Gerüsten) eingesetzt werden. Viele in der Natur vorkommende Fasern übertreffen bislang die Eigenschaften künstlicher Fasern. Die Erkenntnisse der Analyse natürlicher Fasern dienen als Vorbild für die Entwicklung neuer Fasern, z.B. auf der Basis biotechnologisch produzierter Spinnenseiden oder Kollagene, deren Eigenschaften denen des natürlichen Vorbilds entsprechen oder diese sogar übertreffen. Dabei kommt den mechanischen und optischen Eigenschaften der Materialien sowie ihrer Wechselwirkung mit biologischen Systemen (Biomaterial) besondere Bedeutung zu. Die Analyse der biologisch-chemischen, mechanischen und morphologisch-strukturellen Eigenschaften der Materialien erfolgt beispielsweise durch Zug-, Dynamisch-mechanische- oder Thermogravimetrische-Analyse sowie bildgebende Verfahren wie Licht-, Fluoreszenz-, oder Elektronenmikroskopie bzw. eine Kombination dieser.

Abb. 1: Prozesskette der Materialentwicklung

Research Projects

Koeck, Kim (M.Sc.)

kim.koeck(.at.)bm.uni-bayreuth.de

0921-55 6715

Entwicklung und Untersuchung von graduellen Scaffolds für den Achillessehnen-Ersatz

Das Tissue Engineering von faserförmigen Geweben des Bewegungsapparates, beispielsweise Sehnen, stellt aufgrund der komplexen Architektur und mechanischen Ansprüchen eine große Herausforderung dar. Eine natürliche Heilung ist aufgrund der geringen Zellzahl und avaskulären Natur der Gewebe begrenzt. Bei der Heilung tritt an die Stelle einer geordneten, hierarchischen Struktur ein desorganisiertes fibröses Narbengewebe mit minderwertigen mechanischen Eigenschaften. Für die Entwicklung künstlicher Sehnen werden gewebeartige, geflochtene Polymerfasern verwendet, diese besitzen jedoch aufgrund einer fehlenden biologischen Funktion oder eines nicht vorhandenen Material- bzw. mechanischen Gradienten nicht die geeigneten Eigenschaften für einen Total-Sehnenersatz. Durch die Kombination eines textilen Ansatzes mit einem bioinspirierten Materialansatz zielt das Projekt darauf ab, einen Sehnenersatz auf der Basis eines faserverstärkten Gradienten-Kompositmaterials zu schaffen.

Hopfe, Charlotte (M.Sc.)

charlotte.hopfe(.at.)bm.uni-bayreuth.de

0921-55 6712

Ökologische Einflüsse auf die Evolution von Spinnenseide

Derzeit sind ca. 45.000 Spinnenarten bekannt, die alle Seide für unterschiedliche Zwecke nutzen. Nur ein Bruchteil dieser natürlichen Vielfalt der Spinnenseiden wurde bisher mechanisch analysiert. Um eine systematische Suche nach Seiden mit interessanten Eigenschaften durchzuführen, müssen die evolutionären Entwicklungen der Eigenschaften von Spinnenseiden verstanden werden. Die Einflüsse klimatischer Faktoren können zur Erklärung vieler Merkmalsmuster herangezogen werden. Auch die Evolution verschiedener Seideneigenschaften wird vermutlich direkt oder indirekt durch das Klima beeinflusst. Dieses Projekt zielt darauf ab, die mechanischen Eigenschaften des Abseilfadens unterschiedlicher Spinnenarten zwischen verschiedenen klimatischen Zonierungen zu vergleichen, um mögliche klimatisch beeinflusste Muster mechanischer Eigenschaften aufzudecken. 
Neue Eigenschaften evolvieren sukzessive durch die Selektion von Variationen vererbter Merkmale, so dass nah verwandte Arten oft ähnliche Eigenschaften aufweisen. Die Frage, ob mechanische Seideneigenschaften evolutionär konserviert sind oder keine Korrelation mit der Spinnenphylogenie aufweisen, ist durch bisherige Studien nicht abschließend geklärt. Ziel dieser Studie ist, durch das Erweitern der Datenlage zur Lösung dieser Fragestellung beizutragen.

Grill, Carolin (Dipl.-Ing.)

carolin.grill(.at.)bm.uni-bayreuth.de

0921-55 6713

Produktion und Charakterisierung von Multiphasen-Fasern
In diesem Projekt werden mehrphasige Spinnenseidenfasern aus rekombinant hergestellten Spinnenseidenproteinen mittels elektrostatischen Spinnens generiert. Hierfür wirkt ein starkes elektrisches Feld auf einen Flüssigkeitstropfen an der Öffnung einer leitfähigen Kanüle. Auf Grund der elektrostatischen Kräfte verformt sich der Tropfen zu einem Taylor-Konus und bildet mit zunehmender Feldstärke einen Faden aus, welcher in Richtung der Gegenelektrode beschleunigt und gestreckt wird. Dieser Faden legt sich an der Gegenelektrode als Fasermatte ab.

Dr. Bargel, Hendrik

hendrik.bargel(.at.)bm.uni-bayreuth.de

0921-55 6724

Laborleiter Keylab Fasertechnologien
Verschiedene Spinnverfahren für Biopolymere, wie z.B. Nass-, Elektro- und biomimetisches Spinnen sowie Mikrofluidik, werden im Keylab Fasertechnologien innerhalb des Zentrums für Materialwissenschaft und Werkstofftechnik (ZMW) der TechnologieAllianzOberfranken (TAO) organisatorisch zusammengefasst. Das Ziel ist es dabei, die Verarbeitungstechnologien für Fasermaterialien weiter zu entwickeln und für maßgeschneiderte technische Anwendungen anzupassen. Neben verschiedenen physiko-chemischen Analyseverfahren liegt der Schwerpunkt auf Bildgebung und Analyse im EM, insbesondere REM.

Publications

Scheibel, T.,

Scheibel, T., Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist S

Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition

Proc. Natl. Acad. Sci. USA 100, 4527-4532

Scheibel, T.,

Amyloid formation of a yeast prion determinant

J. Mol. Neurosci. 23, 13-22

Scheibel, T., Buchner J

Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease – Principles and Methods.

ChemBioChem. 5, 1153-1154

Scheibel, T.,

Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins

Microbial Cell Factories 3, 14-21

Scheibel, T., Bloom J, Lindquist SL

The elongation of yeast prion fibers involves separable steps of association and conversion

Proc. Natl. Acad. Sci. USA 101, 2287-2292

Scheibel, T., Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R,

Primary structure elements of dragline silks and their contribution to protein solubility and assembly

Biochemistry 43, 13604-13612

Scheibel, T., Huemmerich D, Vollrath F, Cohen S, Gat U, Ittah S

Novel assembly properties of recombinant spider dragline silk protein

Curr. Biol. 14, 2070-2074

Scheibel, T., Serpell L

Methods to study fibril formation

In: J. Buchner & T. Kiefhaber (eds.):Handbook of protein folding Vol. II, pp. 193-249 Wiley VHC, Weinheim

Scheibel, T.,

Protein fibers as performance proteins: new technologies and applications

Curr. Opin. Biotech. 16, 427-433

Scheibel, T., Junger A, Kaufmann D

Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment

Macromol. Biosciences 5, 494-501

Scheibel, T., Zbilut J.P, Huemmerich D, Webber C.L , Colafranceschi M, Giuliani A

Spatial stochastic resonance in protein hydrophobicity

Phys. Lett. A 346, 33-41

Scheibel, T., Vendrely C

Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms

In: B.V. Doupher (ed.): Trends in Prion research, pp. 251-284 Nova Publisher

Scheibel, T., Buchner J

Protein Aggregation as a Cause for Disease

Scheibel, T.,

Editorial: Silk–a biomaterial with several facets

Appl. Phys. A 82, 191-192

Scheibel, T., Huemmerich D, Slotta U

Processing and modification of films made from recombinant spider silk proteins

Appl. Phys. A 82, 219-222

Scheibel, T., Zbilut J.P, Huemmerich D, Webber, C.L, Colafranceschi M, Giuliani A.

Statistical approaches for investigating silk properties

Scheibel, T., Rammensee S, Huemmerich D, Hermanson K, Bausch A.

Rheological characterisation of recombinant spider silk nanofiber networks

Appl. Phys. A 82, 261-264

Scheibel, T., Slotta U, Tammer M, Kremer F, Koelsch P

Structural analysis of films cast from recombinant spider silk proteins

Supramol. Chem. 18, 465-471

Scheibel, T., Sen Gupta, Sayam

Folding, self-assembly and conformational switches of proteins.

.Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, pp. 1-33 Nova Publisher

Scheibel, T., Roemer, L

Herstellung und Anwendung von Spinnenseide

A. Kesel, D. Zehren (eds.): Bionik: Patente aus der Natur,. 3. Bionik Konferenz 2006, Bremen, pp. 130-139

Scheibel, T., Vendrely C

Biotechnological production of spider silk proteins enables new applications

Macromol. Biosciences 7, 401-409

Scheibel, T., Römer L

Grundlagen für neue Materialien – Seidenproteine

Chemie i. u. Zeit 41, 306-314

Scheibel, T., Lodderstedt G, Hess S, Hause G, Scheuermann T, Schwarz E.

Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1

Scheibel, T., Slotta U, Hess S, Spiess K, Stromer T, Serpell L

Spider silk and amyloid fibrils – a structural comparison

Macromol. Biosciences 7, 183-188

Scheibel, T., Exler JH, Hümmerich D

The amphiphilic properties of spider silks are important for spinning

Angew. Chem. Int. Edit. 46, 3559-3562

Scheibel, T., K. D. Hermanson , D. Huemmerich, A. R. Bausch

Engineered microcapsules made of reconstituted spider silk

Adv. Mater. 19, 1810-1815

Scheibel, T., Schmidt M , Romer L, Strehle M

Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media

Biotechnol. Lett. 29, 1741-1744

Scheibel, T., E. Metwalli, U. Slotta, C. Darko SV. Roth, C.M. Papadakis

Structural changes of thin films from recombinant spider silk proteins upon post treatment

Appl. Phys. A 89, 655-661

Scheibel, T., Jijun Dong , Jesse D. Bloom , Vladimir Goncharov , Madhuri Chattopadhyay , Glenn L. Millhauser, David G. Lynn ,and Susan Lindquist,

Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions

Scheibel, T., Dr. Lin Römer , Kristina Spieß

Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand

GIT Labor-Fachzeitschrift 11, 928-931

Scheibel, T., Hess S, Lindquist S

Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM

EMBO Rep. 8,1196-1201

Scheibel, T., Kevin D. Hermanson , Markus B. Harasim , Andreas R. Bausch

Permeability of silk microcapsules made by the interfacial adsorption of protein

Phys. Chem. Chem. Phys. 9, 6442-6446

Scheibel, T., Römer L

The Elaborate Structure of Spider Silk: Structure and Function of a Natural High Performance Fiber

T. Scheibel (ed.): Fibrous proteins Landes Biosciences, Austin

Scheibel, T., Vendrely C, Ackerschott C, Römer L

Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials

E. Gazit & R. Nussinov (eds): Methods in Molecular Biology. Nanostructure Design: Methods and Protocols 474, pp. 3-14

Scheibel, T., Lammel A., Keerl D, Römer, L

Proteins: Polymers of natural origin

J. Hu, (ed.), Biomaterials: Chemistry and Physics, pp. 1-22

Scheibel, T., Weidenauer U

Spinnenseidenproteine als pharmazeutischer Hilfsstoff

Scheibel, T., Lin Römer

Spinnen wie die Spinnen

Nachrichten a. d. Chem. 56, 516-519

Scheibel, T., John G.Hardy , Lin M.Römer

Polymeric materials based on silk proteins

Polymer 49, 4309-4327

Scheibel, T., Krammer C, , Suhre MH, Kremmer E, Diemer C, Hess S, Schätzl HM, Vorberg I.

Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells

FASEB J. 22, 762-773

Scheibel, T., Geisler M, Pirzer T, Ackerschott C, Lud S, Garrido J, Hugel T.

Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study

Langmuir 24, 1350-1355

Scheibel, T., Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud SQ, Garrido JA, Hugel T, Netz RR.

Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces

Proc. Natl. Acad. Sci. USA. 105, 2842-2847

Scheibel, T., S. Rammensee, U. Slotta, A. R. Bausch

Assembly mechanism of recombinant spider silk proteins

Proc. Natl. Acad. Sci. USA. 105, 6590-6595

Scheibel, T., Lammel A, Schwab M, Slotta U, Winter G,

Processing conditions for spider silk microsphere formation

ChemSusChem 5, 413-416

Scheibel, T., Slotta UK, Rammensee S, Gorb S

An engineered spider silk protein forms microspheres

Angew. Chem. Int. Edit. 47, 4592-459

Scheibel, T., Burghard Liebmann, Daniel Hümmerich, Marcus Fehr

Formulation of poorly water-soluble substances using self-assembling spider silk protein

Colloids and Surfaces A: Physicochem. Eng. Aspects 331, 126-132

Scheibel, T., Heim M, Keerl D,

Spider Silk: From Soluble Protein to Extraordinary Fibers

Angew. Chem. Int. Edit. 48, 2 – 15 doi: 10.1002/anie.200803341

Scheibel, T.,

Spinnenseide: Was Spiderman wissen sollte

Scheibel, T., Römer L

The elaborate structure of spider silk: Structure and function of a natural high performance fiber

Prion 2, 154-161

Scheibel, T., Heim M, Römer L

Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein

Chem. Soc. Rev. 39, 156–164 doi: 10.1039/b813273a

Scheibel, T., Dr. Bargel, H., Grunwald I, Rischka K, Kast SM,

Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein

Phil. Trans. Roy. Soc. London: A 367, 1727-1747 doi:10.1098/rsta.2009.0012

Scheibel, T., Hardy JG

Production and processing of spider silk proteins

J. Polymer Sci.: Part A: Polymer Chem. 47, 3957–3963 doi: 10.1002/pola.23484

Scheibel, T., Hardy, J.G.

Silk-inspired polymers and proteins

Biochem. Soc. Trans. 37, 677–681 doi:10.1042/BST0370677

Scheibel, T., Andrew M. Smith

Functional amyloids used by organisms: A lesson in controlling assembly

Macromol. Chem. Phys. 210, 127-135 doi: 10.1002/macp.200900420

Scheibel, T., Anja Hagenau Holger A. Scheidt Louise Serpell Daniel Huster Thomas Scheibe

Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis

Macromol. Biosciences 9, 162-168 doi: 10.1002/mabi.200800271

Scheibel, T., Krammer C, Kryndushkin D, Suhre MH, Kremmer E, Hofmann A, Pfeifer A, Scheibel T, Wickner RB, Schätzl HM, Vorberg I.

The yeast Sup35NM domain propagates as a prion in mammalian cells

Proc. Natl. Acad. Sci. USA 106, 462-467 doi: 10.1073/pnas.0811571106

Scheibel, T., Pirzer T, Geisler M, Hugel T.

Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

Physical Biol. J. 6, 025004 (8pp) doi:10.1088/1478-3975/6/2/025004

Scheibel, T., Cyrille VézyKevin D. HermansonThomas ScheibelAndreas R. Bausch

Interfacial rheological properties of recombinant spider-silk proteins

Biointerphases 4, 43-46 doi: 10.1116/1.317493

Scheibel, T., Suhre MH, Hess S, Golser AV

Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM

J. Inorg. Biochem. 120, 1711-1720 doi:10.1016/j.jinorgbio.2009.09.021   

Scheibel, T., Heim M, Römer L

Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins

Chem. Soc. Rev. 39, 156–164 doi: 10.1039/b813273a

Scheibel, T., Leal-Egaña A

Silk-based materials for biomedical applications

Biotechnol. Appl. Biochem. 55, 155–167  doi:10.1042/BA20090229

Scheibel, T., Hardy, J.G.

Composite materials based on silk proteins

Progr. Polymer Sci. 35, 1093-1115 doi:10.1016/j.progpolymsci.2010.04.00

Scheibel, T., Spiess K, Lammel A

Recombinant spider silk proteins for applications in biomaterials

Macromol. Biosciences 10 (9), 998-1007 doi: 10.1002/mabi.201000071

Scheibel, T.,

Advanced Biomaterials

Macromol. Biosciences 10, 674  doi: 10.1002/mabi.201000195

Scheibel, T.,

Spider silk from nature to bio-inspired materials

Chem Fiber Int 3, 15-16

Scheibel, T., Heim M, Ackerschott CB

Characterization of recombinantly produced spider flagelliform silk domains

J. Struct. Biol. 170, 420–425 doi: 10.1016/j.jsb.2009.12.025

Scheibel, T., Eisoldt L1, Hardy JG, Heim M

J. Struct. Biol. 170, 413–419 doi: 10.1016/j.jsb.2009.12.027

Scheibel, T., Anja Hagenau

Towards the recombinant production of mussel byssal collagens

J. Adhesion 86, 10-24  doi: 10.1080/0021846090341770

Scheibel, T., Lammel AS1, Hu X, Park SH, Kaplan DL

Controlling silk fibroin particle features for drug delivery

Biomaterials 31, 4583-4591 doi: 10.1016/j. biomaterials.2010.02.024

Scheibel, T., Franz Hagn, Lukas Eisoldt, John G. Hardy, Charlotte Vendrely, Murray Coles

A conserved spider silk domain acts as a molecular switch that controls fibre assembly

Nature 365, 239-242  doi: 10.1038/nature08936

Scheibel, T., David Keerl, John George Hardy

Biomimetic spinning of recombinant silk proteins

Mater. Res. Soc. Symp. Proc. 1239, VV07-20

Scheibel, T., Kristina Spieß, Stefanie Wohlrab

Structural characterization and functionalization of engineered spider silk films

Soft Matter 6, 4168–4174 doi: 10.1039/b927267d

Scheibel, T., Humenik, M., Andrew Smith

Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber

Scheibel, T., Lukas Eisoldt, Andrew Smith

Decoding the secrets of spider silk

Materials Today 14, 80–86

Scheibel, T., Kristina Spiess Andreas Lammel

Recombinant spider silk proteins for applications in biomaterials

Best of Macros 2011, S32-S41 doi: 10.1002/mabi.201000071

Humenik, M., Scheibel, T., Andrew Smith

Recombinant spider silks – biopolymers with potential for future applications

Polymers 3, 640–661 doi:10.3390/polym3010640

Scheibel, T., Dr. Franz Hagn, Christopher Thamm, Prof. Dr. Horst Kessler

pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation

Angew. Chem. Int. Ed. 50, 310-313 doi: 10.1002/anie.201003795

Scheibel, T., Lammel A, Schwab M, Hofer M, Winter G

Recombinant spider silk particles as drug delivery vehicles

Biomaterials 32, 2233–2240 doi: 10.1016/j.biomaterials.2010.11.060

Scheibel, T., Anja Hagenaua, Periklis Papadopoulos, FriedrichKremer

Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads

J. Structural Biol. 175, 339-347  doi.org/10.1016/j.jsb.2011.05.016

Scheibel, T., Kristin Schacht

Controlled hydrogel formation of a recombinant spider silk protein

Biomacromolecules 12, 2488–2495 doi:10.1021/bm200154k

Scheibel, T., Kristina Spiess, Roxana Ene, Caroline D. Keenan, Jürgen Senker, Friedrich Kremerb

Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films

J. Mater. Chem. 21, 13594-13604 doi: 10.1039/C1JM11700A

Scheibel, T., Slotta, U., Spieß, K

Spider Silk

The Functional Fold. Useful Amyloid Structures in Nature, pp. 73-90 Pan Stanford Publishing, Singapore

Scheibel, T., Lukas Eisoldt Christopher Thamm

The role of terminal domains during storage and assembly of spider silk proteins

Biopolymers 97, 355-361 doi: 10.1002/bip.22006

Scheibel, T., Kai U. Claussen , Thomas Scheibel , Hans‐Werner Schmidt, Reiner Giesa

Polymer gradient materials: can nature teach us new tricks?

Macromol. Mater. Eng. 297, 938–957 doi: 10.1002/mame.201200032

Scheibel, T., Claussen KU, Giesa R, Schmidt HW.

Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads

Macromol. Rapid Commun. 33, 206-211 doi: 10.1002/marc.201100620

Scheibel, T., Bluem C

Control of drug loading and release properties of spider silk sub-microparticles

BioNanoSci. 2, 67-74 doi: 10.1007/s12668-012-0036-7

Scheibel, T., Aldo Leal‐Egaña, Gregor Lang, Carolin Mauerer, Jasmin Wickinghoff, Michael Weber, Stefan Geimer

Interactions of fibroblasts with different morphologies made of an engineered spider silk protein

Adv.  Eng.  Mater. 14, B67-B75 10.1002/adem.20118007

Scheibel, T., Keerl D

Characterization of natural and biomimetic spider silk fibers

Bioinspired, Biomimetic and Nanobiomaterials (BBN) 1, 83-94 doi: 10.1680/bbn.11.00016

Scheibel, T., bauer F

Artificial egg stalks made of a recombinantly produced lacewing silk protein

Ang. Chemie Intl. Edit. 124, 6627-6630 doi: 10.1002/anie.201200591

Scheibel, T., Aldo Leal-Egañaa

Interactions of cells with silk surfaces

J. Mater. Chem. 22, 14330-14336 doi: 10.1039/c2jm31174g

Schmidt, Andreas (BTA), Scheibel, T., Stefanie Wohlrab, Susanne Müller, Stefanie Neubauer,Horst Kessler, Aldo Leal-Egaña

Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins

Biomaterials 33, 6650-6659 doi: 10.1016/j.biomaterials.2012.05.069

Scheibel, T., Seth L. Young, Maneesh Gupta, Christoph Hanske, Andreas Fery, Vladimir V. Tsukruk

Utilizing conformational changes for patterning thin films of recombinant spider silk proteins

Biomacromolecules 13, 3189-3199 doi: 10.1021/bm300964h

Scheibel, T., Stefanie Wohlrab, Kristina Spießa

Varying surface hydrophobicities of coatings made of recombinant spider silk proteins

J. Mater. Chem. 22, 22050-22054 doi: 10.1039/c2jm35075k

Scheibel, T., Bauer F, Bertinetti L, Masic A,

Dependence of mechanical properties of lacewing egg stalks on relative humidity

Biomacromolecules. 13, 3730-3735 doi: 10.1021/bm301199d

Scheibel, T., Andrew Smith

Hierarchical Protein Assemblies as a Basis for Materials

Architecture, pp. 256-281 RCS Publishing, Cambridge. doi: 10.1039/9781849737555-00256

Scheibel, T., Lauterbach A.Y.,

Determining the Environmental Benefit of Artificial Spider Silk Products

CTSI-Cleantech 2013, 108-111 ISBN: 978-1-4822-0586-2

Scheibel, T., Stefanie Wohlrab, Christopher Thamm

The Power of Recombinant Spider Silk Proteins

doi: 10.1007/978-94-007-7119-210

Scheibel, T., AnielaHeidebrecht

Recombinant Production of Spider Silk Proteins

Adv. Appl. Microbiol. 82, 115-153 doi: 10.1016/B978-0-12-407679-2.00004-1

Scheibel, T., Eileen S. Lintz

Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers

Adv. Funct. Mater. 23, 4467–4482 doi: 10.1002/adfm.201300589

Scheibel, T.,

Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit

Chemie & More, 4, 3-5

Scheibel, T., Hofmann JP, Denner P, Nussbaum-Krammer C , Kuhn PH, Suhre MH, Lichtenthaler SF, Schätzl HM, Bano D, Vorberg IM.

Cell-to-cell propagation of infectious cytosolic protein aggregates

PNAS 110, 5951–5956 doi: 10.1073/pnas.1217321110

Scheibel, T., Gregor Lang, S Jockish

Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins

J. Vis. Exp. 75, e50492 (link) doi: 10.3791/50492

Scheibel, T., Claussen KU, Lintz ES, Giesa R, Schmidt HW

Protein gradient films of fibroin and gelatine

Macromol. BioSci. 13, 1396–1403 doi: 10.1002/mabi.201300221

Scheibel, T., John G. Hardy, Aldo Leal‐Egaña

Engineered spider silk protein-based composites for drug delivery

Macromol. BioSci. 13, 1431–1437 doi: 10.1002/mabi.201300233

Scheibel, T., Martin P. Neubauer, Claudia Blüm,Elisa Agostini, Julia Engert, Andreas Fery

Micromechanical characterization of spider silk particles

Biomater. Sci. 1, 1160-1165 doi: 10.1039/C3BM60108K

Scheibel, T., Nicolas Helfricht, Maria Klug, Andreas Mark,Volodymyr Kuznetsov, Claudia Blüm,Georg Papastavrou

Surface properties of spider silk particles in solution

Biomater. Sci. 1, 1166-1171 doi: 10.1039/C3BM60109A

Scheibel, T., Felix Bauer, Stefanie Wohlrab

Controllable cell adhesion, growth and orientation on layered silk protein films

Biomater. Sci. 1, 1244-1249 doi: 10.1039/c3bm60114e

Scheibel, T., Claudia Blüm, Alfons Nichtl

Spider silk capsules as protective reaction containers for enzymes

Adv. Funct. Mater. 24, 763–768 doi: 10.1002/adfm.201302100

Scheibel, T., Heim M, Elsner MB

Lipid-specific ß-sheet formation in a mussel byssus protein domain

Biomacromolecules 14, 3238-45 doi: 10.1021/bm400860y

Scheibel, T., David Keerl

Rheological characterization of silk solutions

Green Materials 2, 11 –23 doi: 10.1680/gmat.13.00009

Scheibel, T., Neuenfeldt M,

Silks From Insects – From Natural Diversity to Application

In: K. H. Hoffmann (ed): Insect Molecular Biology and Ecology. CRC Press ISBN 9781482231885

Scheibel, T.,

Die Natur als Vorbild für bioinspirierte Materialien der Zukunft

Scheibel, T., Anja Hagenau, Michael H.Suhre

Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels

Progr. Polym. Sci. 39, 1564-1583 doi: 10.1016/j.progpolymsci.2014.02.007

Scheibel, T., Schacht K

Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications

Curr. Opin. Biotechnol. 29, 62-69 doi: 10.1016/j.copbio.2014.02.015

Scheibel, T., Dr. Gregor Lang

Multifunktionale Spinnenseide – ein vielversprechender Werkstoff

MaschinenMarkt 26, 36-39

Scheibel, T., Christian B. Borkner†, Martina B. Elsner

Coatings and films made of silk proteins

ACS Appl. Mater. Interface. 29, 62-69 doi: 10.1021/am5008479

Scheibel, T., Cordt Zollfrank,Heike Seitz, Nahum Travitzky

Bioinspired materials engineering

Ullmann’s Encyclopedia of Industrial Chemistry doi: 10.1002/14356007.s04_s01

Humenik, M., Scheibel, T.,

Self-assembly of nucleic acids, silk and hybrid materials thereof

J. Phys. Condens. Matter 26, 503102 doi: 10.1088/0953-8984/26/50/503102

Scheibel, T., Heidebrecht A

Spionik – Biotech Spinnenseide und ihre Einsatzgebiete

GIT Bioforum 2, 20-22

Humenik, M., Scheibel, T.,

Nanomaterial building blocks based on spider silk–oligonucleotide conjugates

ACS Nano 8, 1342-1349 doi: 10.1021/nn404916f

Scheibel, T., Suhre MH, Gertz M, Steegborn C

Structural and functional features of a collagen-binding matrix protein from the mussel byssus

Nat. Comm., 5, 3392 doi: 10.1038/ncomms4392

Scheibel, T., Suhre MH, Gertz M, Steegborn C,

Structural and functional features of a collagen-binding matrix protein from the mussel byssus

J. Struct. Biol. 186, 75-85 doi: 10.1016/j.jsb.2014.02.013

Scheibel, T., Hardy JG, Pfaff A, Leal-Egaña A, Müller AH,

Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion

Macromol. Biosci., 14, 936-42 doi: 10.1002/mabi.201400020

Scheibel, T., Michael H. Suhre, Clemens Steegborn, Melanie Gertzb

Crystallization and preliminary X-ray diffraction analysis os PTMP1

Acta Crystallographica Section F 70, 769-772 doi: 10.1107/S2053230X14006165

Scheibel, T., Humenik, M., Magdeburg M

Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins

J. Struct. Biol., 186, 431-437 doi: 10.1016/j.jsb.2014.03.010

Humenik, M., Scheibel, T., Markus Drechsler

Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies

Nano Lett.., 14, 3999−4004 doi: 10.1021/nl501412k

Scheibel, T., Anja Yvonne Lauterbach

Life cycle assessment of spider silk nonwoven meshes in an air filtration device

Green Materials., 3: 15-24 doi: 10.1680/gmat.14.00011

Scheibel, T., R. H. Zeplin, A.-K. Berninger, N. C. Maksimovikj, P. van Gelder, H. Walles

Verbesserung der Biokompatibilität von Silikonimplantaten

Handchir. Mikrochir. Plast. Chir., 46: 336-41 doi: 10.1055/s-0034-1395558

Scheibel, T.,

Engineering of rec SSP allows defined drug uptake and release

TechConnect Briefs 2015: Biotech, Biomaterials and Biomedical CRC Press

Scheibel, T., Doblhofe E, Heidebrecht A,

To spin or not to spin: spider silk fibers and more

Appl. Microbiol. Biotechnol. 99: 9361-9380 doi: 10.1007/s00253-015-6948-8

Scheibel, T., Tomasz Jungst, Willi Smolan, Kristin Schacht, Jürgen Groll

Strategies and molecular design criteria for 3D printable hydrogels

Chem. Rev.. 99: 9361-9380 doi: 10.1021/acs.chemrev.5b00303

Scheibel, T.,

Vom Spinnennetz zur High-Tech-Faser

Naturwiss. Rundschau.. 68: 524-525

Scheibel, T., Doblhofer E

Engineering of recombinant spider silk proteins allows defined uptake and release of substances

J. Pharm. Sci, 104: 988-994 doi: 10.1002/jps.24300

Dr. Bargel, H., Scheibel, T., , Martina B. Elsner, Susanne Müller-Herrmann

Enhanced cellular uptake of engineered spider silk particles

Scheibel, T., Schacht K1, Jüngst T, Schweinlin M, Ewald A, Groll J

Biofabrication of cell-loaded 3D spider silk constructs

Angew, Chem., 54: 2816–2820 doi: 10.1002/anie.201409846

Scheibel, T., Diehl, Johannes, Aniela Heidebrecht ,Lukas Eisoldt, Andreas Schmidt, Martha Geffers, Gregor Lang

Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk

Adv. Mater., 27: 2189–2194 doi: 10.1002/adma.201404234

Scheibel, T., Susanne Müller-Herrmann

Enzymatic degradation of films, particles and non-woven meshes

ACS Biomater. Sci. Eng., 1: 247–259 doi: 10.1021/ab500147u

Humenik, M., Scheibel, T., Andrew M. Smith, Sina Arndt

Data for ion and seed dependent fibril assembly of a spidroin core domain

Data in Brief 4: 571–576 doi: 10.1016/j.dib.2015.07.023

Scheibel, T., Helmut Zahn, Anita Krasowski

Silk

https://onlinelibrary.wiley.com/doi/10.1002/14356007.a24_095.pub2/otherversions

Scheibel, T., Thomas Scheibel, Jürgen Groll, Aldo R. Boccaccini, Tobias Zehnder, Tomasz Jungst, Kristin Schacht

Zellgewebe aus dem Drucker

Nachrichten aus der Chemie 64: 13-16 doi: 10.1002/nadc.20164044385

Scheibel, T., Tomasz Jungst, Willi Smolan, Kristin Schacht, and Jürgen Groll

Strategies and molecular design criteria for 3D printable hydrogels

Chem. Rev. 116: 1496-1539 doi: 10.1002/nadc.20164044385

Dr. Bargel, H., Scheibel, T.,

Zukunftsfeld Bionik

UBT Spektrum, 1: 54 – 57

Scheibel, T., J. Bauer

Die Schwarze Witwe und ihre Künste

UBT Aktuell, 2: 60 – 63

Scheibel, T., David L. Caplan

Recombinant Silk Production in Bacteria

Reference Module in Materials Science and Engineering doi:10.1016/B978-0-12-803581-8.02274-8

Scheibel, T., Ling Peng, Shaohua Jiang, Maximilian Seuß, Andreas Fery, Gregor Lang, Seema Agarwal

Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning

Macromol. Mater. Eng. 301: 48-55 doi: 10.1002/mame.20150021

Scheibel, T., Schaal D, Bauer J, Schweimer K, Rösch P, Schwarzinger S

Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster

Biomol. NMR Assign. 10: 199-202 doi: 10.1007/s12104-016-9666-

Scheibel, T., Kristin Schacht, Jessica Vogt

Foams made of engineered recombinant spider silk proteins

ACS Biomater. Sci. Eng. 2: 517-525 doi: 10.1021/acsbiomaterials.5b00483

Scheibel, T., Elise DeSimone, Kristin Schacht,

Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins

Mater. Lett., 183: 101-104 doi: 10.1016/j:matlet.2016.07.044

Scheibel, T., Christian Haynl, Eddie Hofmann, Kiran Pawar, Stephan Förster

Microfluidics-produced collagen fibers show extraordinary mechanical properties

Nano Lett. 2016, 16: 5917 – 5922 doi: 10.1021/acs.nanolett.6b02828

Scheibel, T., Christian B. Borkner, Stefanie Wohlrab, Gregor Lang

Surface modification of polymeric biomaterials using recombinant spider silk proteins

ASC Biomat. Sci.Eng. 2017, 3: 767 – 775 doi: 10.1021/acsbiomaterials.6b00306

Scheibel, T., Martina B. Schierling, Elena Doblhofera

Cellular uptake of drug loaded spider silk particles

Biomater. Sci. 2016, 4: 1515-1523 doi: 10.1039/c6bm00435k

Scheibel, T., Nicolas Helfricht, Elena Doblhofer‡, Jérôme F. L. Duval, Georg Papastavrou

Colloidal properties of recombinant spider silk protein particles

J. Phys. Chem. C. 2016, 120, 18015 – 18027 doi: 10.1021/acs.jpcc.6b03957

Dr. Bargel, H., Scheibel, T., Elena Doblhofer, Jasmin Schmid, Martin Rieß, Matthias Daab, Magdalena Suntinger, Christoph Habel, Christoph Hugenschmidt, Sabine Rosenfeldt, Josef Breu

Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties

Appl. Mater. Interfaces 2016, 8: 25535 – 25543 doi: 10.1021/acsami.6b08287

Scheibel, T., Bauer J, Schaal D, Eisold L, Schweimer K, Schwarzinger S,

https://www.nature.com/articles/srep34442

Sci. Rep. 6, 34442 doi: 10.1038/srep34442

Scheibel, T., , Dr. Gregor Lang

Properties of engineered and fabricated silks

Scheibel, T., Nicolas Helfricht, Elena Doblhofer, Vera Bieber, Petra Lommes, Volker Sieber, Georg Papastavrou

Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement

Soft Matter 2017, 13: 578 – 589 doi: 10.1039/c6sm02326f

Scheibel, T., Gregor Lang, Benedikt R. Neugirg, Daniel Kluge, Andreas Fery

Mechanical testing of engineered spider silk filaments

ACS Appl. Mater. Interfaces, 2017, 9: 892 – 900 doi: 10.1021/acsami.6b13093

Scheibel, T., Bauer J

Conformational stability and interplay of N- and C-terminal domains

Biomacromolecules 2017, 18: 835 – 845 doi: 10.1021/acs.biomac.6b01713

Scheibel, T., Christopher Thamm

Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)

Biomacromolecules 2017, 18: 1365 – 1372 doi: 10.1021/acs.biomac.7b00090

Scheibel, T., Neuenfeldt M,

Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea

Scheibel, T., Bauer J

Dimerzation of the conserved N-Terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain

Biomacromolecules,2017, 18: 2521 – 2528 doi: 10.1021/acs.biomac.7b00672

Scheibel, T., Thamm C, DeSimone E,

Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing

Macromol. Biosci. 2017, in print doi: 10.1002/mabi201700141

Scheibel, T., Adrian V. Golsera

Biotechnological production of the mussel byssus derived collagen preColD

RSC Adv., 2017, 7: 38273 – 38278 doi: 10.1039/c7ra04515h

Scheibel, T., , Jana Petzold, Filip Touska, Katharina Zimmermann, Felix B. Engel

Surface Features of Recombinant Spider Silk Protein eADF4(κ16)-Made Materials are Well-Suited for Cardiac Tissue Engineering

Scheibel, T., ,

Applicability of biotechnologically produced insect silks

Zeitschrift für Naturforschung, 2017, 72 (9-10), 365-385 doi:10.1515/znc-2017-0050

Scheibel, T., Stephan Jokisch , Martin Neuenfeldt,

Silk-Based Fine Dust Filters for Air Filtratio

Adv.Sustainable Syst, in print doi:10.1002/adsu.201700079

Scheibel, T., Anton AM, Heidebrecht A, Mahmood , Beiner M, Scheibel T, Kremer F

Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk

Biomac, in print doi:10.1021/acs.biomac7b00990

Scheibel, T., Pellert, Alexandra (MTA), Elise DeSimone, Kristin Schacht,

Recombinant spider silk-based bioinks

Biofabrication 9, 4, (2017), 044104 doi: 10.1088/1758-5090

Scheibel, T., Salehi, S., Vanessa J.Wicklein, Bernhard B.Singer,

Nanoengineered biomaterials for corneal regeneration

In: Nanoengineered Biomaterials for Regenerative Medicine. Elsevier Inc. doi: 10.1016/B978-0-12-813355-2.00017-

Scheibel, T., Dr. Bargel, H., Jokisch, S.

Einsatz von Biomaterialien in Filtersystemen

In: Prototype Nature 

Dr. Bargel, H., Scheibel, T.,

Bio-inspirierte Materialien

MNU Journal 2018, 1, 4-10 ISSN: 0025-5866

Dr. Bargel, H., Scheibel, T.,

Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge

MNU Journal 2018, 1, 4-10 ISSN: 0025-5866

Humenik, M., Scheibel, T., Gregor Lang

Silk nanofibril self-assembly versus electrospinning

WIREs Nanomed. Nanobiotechnol. 2018, e 1509 doi: 10.1002/wnan.1509

Scheibel, T., Haug, M., Reischl, B., Prölß, G., Pollmann, C., Buckert, T., Keidel, C., Schürmann, S., Hock, M., Rupitsch, S., Heckel, M., Pöschel, T., Haynl, C., Kiriaev, L, SI Head & Friedrich, O.

The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials

Biosensors and Bioelectronics 2018, 102, 589-599 doi: 10.1016/j.bios.2017.12.003

Scheibel, T., , Frank Mickoleit , Christian B. Borkner, Mauricio Toro-Nahuelpan, Denis S. Maier, Jürgen M. Plitzko, Dirk Schüler

In vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides

Biomacromolecules, 19, 3, 962 – 972  doi: 10.1021/acs.biomac.7b01749

Salehi, S., Scheibel, T.,

Biomimetic spider silk fibres: from vision to reality

The Biochemist, 2018, Vol. 40, No 1.

Scheibel, T., , Elise DeSimone

Biomedical Applications of Recombinant Silk-Based Materials

Adv.Mater., 2018,  30  doi: 10.1002 / adma.201704636

Scheibel, T., Eileen S. Lintz Christoph Neinhuis

Altering Silk Film Surface Properties through Lotus-Like Mechanisms

Macromol.Mater.Eng., 2018,303, 4  doi: 10.1002/mame.201700637

Scheibel, T., Adrian V. Golser

Routes towards Novel Collagen-Like Biomaterials

Fibers 2018, 6, 21 doi: 10.3390/fib6020021

Kumari, S., Dr. Bargel, H., Scheibel, T., Mette U. Anby, David Lafargue

Recombinant spider silk hydrogels for sustained release of biologicals

ACS Biomater., 2018,4, 1750 – 1759 doi: 10.1021/acsbiomaterials.8b00382

Scheibel, T., , Lucke, M., Mottas, I., Herbst, T., Hotz, C., Römer, L., Schierling, M., Slotta, U., Spinetti, T., T., Winter, G., Bourquin, C. & Engert, J.

Engineered spider silk hybrid particles as delivery system for peptide vaccines

Biomaterials 2018, 172, 105 – 115  doi: 10.1016/j.biomaterials.2018.04.008

Scheibel, T., Adrian V. Golser, Matthias Röber, Hans G. Börner

Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces

Biomat, in print  doi: 10.1021/ascbiomaterials.7b00583

Scheibel, T., Eddie Hofmann, Kilian Krüger, Christian Haynl, Thomas Scheibel, Martin Trebbind, Stephan Förster

Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter contro

LabChip, 2018, 18, 2225-2234 doi: 10.1039/c8lc00304a

Scheibel, T., Wang, J.,

Recombinant production of mussel byssus inspired proteins

Wang, J., Scheibel, T.,

Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b

Biomac. 2018,19, 3612 – 3619 doi: 10.1021/acs.biomac.8b00583

Scheibel, T., Kaveh Roshanbinfar, Lena Vogt, Boris Greber, Sebastian Diecke, Aldo R. Boccaccini , Felix B. Engel

Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues

Adv. Funct.Mat., 2018, 28, 14 doi:10.1002/adfm.201803951

Scheibel, T., Humenik, M., Hardy, J., Bertin, A., Torres-Rendon, J., Leal-Egana, A., Bauer, F., Walther, A., Cölfen, H., Schlaad, H.

Facile Photochemical Modification of Silk Protein-Based Biomaterials

Bacromol.Biosci., 2018, 18, 11 doi: 10.1021/mabi.201800216

Humenik, M., Scheibel, T., Molina, A.

Nanoscale patterning of surfacesvia DNA directed spider silk assembly

Biomacromolecules, 2019, in print doi: 10.1021/acs.biomac.8b01333

Scheibel, T., Zha, H.R., Delparastan, P., Fink D. T., Bauer, J., Messersmith, P. B.

Universal nanothin silk coatings via controlled spidroin self-assembly

Biomaterials Science , 2019, in print doi:10.1039/C8BM04486A

Scheibel, T., Zha, H.R., Delparastan, P., Fink D. T., Bauer, J., Messersmith, P. B.

Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of (Gly-Pro-Pro)7 collagen mimetic peptdes

Europolymj. , 2019, 112, 301 – 305 doi:10.1016/j.europolymj.2018.12.045

Scheibel, T., , Grill, C., Krüger, St., Taubert, A.

Spider-MAEN_recombinant spider silk based hybrid materials

Bioinsp/Biomimetic/Nanobiomaterials, in print doi:10.1680/jbibn.18.00007

Wang, J., Scheibel, T., Michael H. Suhre

A mussel polyphenol oxidase-like proein shows thiol-mediated antioxidant_supplement

Europolymj. , 2019, Vol. 113, 305 – 31 doi:10.1016/j.europolymj.2019.01.069

Humenik, M., Scheibel, T., Mohrand, M.

Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.

Bioconjugate Chemistry doi: 10.1021/acs.bioconjchem.1027b00759.

Scheibel, T.,

Herstellung und Anwendung von Spinnenseide

In: A. Kesel, D. Zehren (eds.): Bionik: Patente aus der Natur,. 3. Bionik Konferenz 2006, Bremen, pp. 130-139

Scheibel, T., Andrew M. Smith

Functional amyloids used by organisms: A lesson in controlling assembly

Macromol. Chem. Phys. 210, 127-135 doi: 10.1002/macp.200900420

Scheibel, T., Kristina Spieß, Stefanie Wohlrab

Structural characterization and functionalization of engineered spider silk films

Soft Matter 6, 4168–4174 doi: 10.1039/b927267d

Scheibel, T., Gregor Lang, Heike Herold

Properties of engineered and fabricated silks

Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted …In: Subcell. Biochem. 82:527-573

Scheibel, T., Elise DeSimone,Alexandra Pellert , Kristin Schacht

Recombinant spider silk-based bioinks

Biofabrication 9, 4, (2017), 044104 doi: 10.1088/1758-5090

Scheibel, T., Wang J

Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b

The underwater adhesion of marine mussels is a fascinating example of how proteinaceous adhesives, although water-soluble to begin with, can be used in seawater. Biomac. 2018, inprint  doi: 10.1021/acs.biomac.8b00583

Scheibel, T., Kaveh Roshanbinfar Lena Vogt Boris Greber Sebastian Diecke Aldo R. Boccaccini ,Felix B. Engel

Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues

Cardiac tissue engineering is a promising strategy to treat heart failure. Yet, several issues remain to be resolved including the prevention of arrhythmia …

Scheibel, T.,

Facile Photochemical Modification of Silk Protein-Based Biomaterials

Silk protein-based materials show promise for application as biomaterials for tissue engineering.

Back to Top

Icons made by Freepik from www.flaticon.com is licensed by CC 3.0 BY