Prof. Dr. Scheibel, Thomas

Open Resume

Gradient Materials and Delivery Systems

The research group “Gradient Materials and Drug Delivery Systems” deals with research and development of gradient materials and drug delivery systems of protein-based materials. A gradient is a gain or decline of a property in a certain direction, e.g. a mechanical gradient from stiff to soft. In turn, drug delivery systems as transporters or depots are used in medical technology to improve the availability and targeted release of therapeutic agents in the body and to reduce unwanted side effects.

The research group uses dragline silk of the European cross spider, consisting of the frames and spokes of the spider web and the lifeline, as a model material. Due to its biocompatibility, biodegradability and non-toxic properties, spider silk is a suitable material for biomedical applications. Applications of silk materials are manifold, e.g. foams and hydrogels with adjustable pore sizes are suitable as cell support systems in the field of tissue reconstruction. Gradient materials are of particular interest for these morphologies. Inspired by the gradient of another materials model, the byssus threads of marine mussels, functional gradient materials are developed based on proteins (see Fig. 1). For example, the material can be gradually mineralized in order to specifically increase its stiffness. In the field of drug delivery systems, functionalized microspheres, particles and capsules made of recombinant spider silk proteins are developed for innovative and effective delivery vehicles.

Fig. 1: Gradient materials can be generated comprising different functions and showing various morphologies using different processing techniques of biopolymers.

Research Projects

Sommer, Christoph (M.Sc.)

christoph.sommer@bm.uni-bayreuth.de

0921 55-6719

Under construction (CS)

Project description needs to be updated.

Rudolph, Julia

julia.rudolph(.at.)bm.uni-bayreuth.de

0921-55 6707

Effect of microplastic particles on cells

The influence of microplastic on organisms is an ongoing research topic. This project aims at the evaluation of the influence of microplastic particles at the cellular level using model cell types in dependence of different properties of the particles, e.g. charge, surface chemistry etc.

Neubauer, Vanessa (M.Sc.)

vanessa.neubauer(.at.)bm.uni-bayreuth.de

0921-55 6705

Biofabrication of Biomineralized 3D Protein Gradient Scaffolds

Among the great challenges of modern medicine is the regeneration of tissues. One promising approach is the manufacturing of tailor-made tissue scaffolds for regenerative medical approaches, known as tissue engineering. Spider silk is a suitable candidate for biomaterial applications since it shows no immunogenicity, good biocompatibility and biodegradability. By processing recombinant spider silk proteins into hydrogels, 3D scaffolds can be printed for biomedical applications. In this context, specialized scaffold preparation for tissue regeneration applications such as gradient materials for tendon replacement are in the focus. This also includes oriented biomineralization of the gradient material similar to the natural blueprint.

Döbl, Annika (M.Sc.)

annika.doebl(.at.)bm.uni-bayreuth.de

0921-55 6711

3D cultivation of tumor cells as in vitro model for cancer research

So far, preclinical tumor research for identification of possible drugs is based on 2D cell culture methods and xenograft mice. 3D tumor cell cultivation techniques will expand the tools of in vitro cancer models, providing additional insights into cancerous tissue analysis. Hydrogels made of recombinant spider silk proteins are a well-suited material for 3D cell culture due to their suitable mechanical and biochemical properties, and they can be used as bioink to create cell-laden constructs using 3D-printing technologies. The project objective is to develop a 3D in vitro tumor model.

Trossmann, Vanessa (M.Sc.)

vanessa.trossmann(.at.)bm.uni-bayreuth.de

0921-55 6710

Recombinant spider silk proteins with designed cell-substrate-interaction for biomedical applications

Due to its unique mechanical and biochemical properties spider silk is in the focus of research since decades. Spider silk proteins are biodegradable, biocompatible and show no immune reaction in the human body, thereby representing a suitable material for biomedical applications. The development of recombinant technologies, inspired by the natural occurring gene sequences of the European garden spider Araneus diadematus, enable the biotechnological production of spider silk proteins in high-yields. They can be processed into several different morphologies, such as fibers, films, hydrogels, foams, nonwovens and particles, leading to diverse potential applications. With respect to tissue engineering and regenerative medicine, specific cell adhesion is a decisive factor. Since cell attachment to unmodified silk protein is often low, it is sometimes necessary to develop proteins including cell-interacting ligands. The project objective is thus to modify and functionalize biocompatible spider silk scaffolds for guided cell-substrate-interaction by using genetic or chemical coupling and varying processing methods.

Figure 1: Hydrogel and foam made of the recombinant spider silk protein eADF4(C16).

Koeck, Kim (M.Sc.)

kim.koeck(.at.)bm.uni-bayreuth.de

0921-55 6715

Development and analysis of gradient scaffolds for Achilles tendon replacement
Tissue engineering of fibrous tissues of the musculoskeletal system, such as tendon, presents a major challenge for biomedical research due to its complex architecture and mechanical behavior. Natural healing of tendon is limited due to a low number of cells and its avascularity. In healing, a hierarchically organized structure is replaced by a disorganized fibrous scar tissue with inferior mechanical properties. To address this problem, fabric-like braided polymer ropes are used as partial tendon replacements, however, these tend to be inferior due to a lack of biological function as well as lack of material/mechanical gradients. This projects aims to create a total tendon replacement based on a gradient fiber-reinforced composite by combining a textile approach with abio-inspired materials approach. The tendon-like replacement tissue will be evaluated based on the mechanical stability and biocompatibility.

Publications

Haynl, C., Vongsvivut, J., Mayer, K., Bargel, H., Neubauer, V., Tobin, M., Elgar, M. & Scheibel, T.

Free‑standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro‑ and submicron fibers

Scientific Report, online Oct. 2020

Müller, F., Jokisch, S., Bargel, H. & Scheibel, T.

Centrifugal Electrospinning Enables the Production of Meshes of Ultrathin Polymer Fibers

ASC Applied Polymer Materials, online Oct. 2020

Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel , M., Jacobs, K., Krämer, N. & Scheibel, T.

Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials

Data in Brief, Vol. 32, Oct. 2020

Neubauer, V., Scheibel, T.

Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization

ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608

Hopfe, C., Ospina-Jara, B., Scheibel, T., Cabra-Garcia, J.

Ocrepeira klamt sp. n. (Araneae: Araneidae), a novel spider species from an Andean pa´ramo in Colombia

PLOS One

Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N., Scheibel, T.

Engineered spider silk-based 2D and 3D materials prevent microbial infestation

Mathilde Lefevre, Patrick Flammang , A. Sesilja Aranko , Markus B. Linder , Thomas Scheibel , Martin Humenik , Maxime Leclercq , Mathieu Surin , Lionel Tafforeau, Ruddy Wattiez, Philippe Leclère, Elise Hennebert

Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings

Scheibel T., Weikl T., Buchner J.

Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence

Proc. Natl. Acad. Sci. U S A. 4, 1495- 1499.

Scheibel T., Buchner J.

The Hsp90 complex – a super-chaperone machine as a novel drug target

Biochem. Pharmacol. 6, 675-682.

Scheibel T., Siegmund H. I., Jaenicke R., Ganz P., Lilie H., Buchner J.

The charged region of Hsp90 modulates the function of the N-terminal domain

Proc. Natl. Acad. Sci. U S A. 4, 1297-302

Thomas Scheibel

Spider silk-based biomaterials: a new opportunity for product development in many industries

Weiss A. C. G., Herold H. M., Lentz S., Faria M., Besford Q. A., Ang C.-S., Caruso F., Scheibel T.

Surface modification of spider silk particles to direct biomolecular corona formation

Kramer J. P. M., Aigner T. B., Petzold J., Roshanbinfar K., Scheibel T., Engel F. B.

Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering

Jokisch, S., Bargel, H., Scheibel, T.

Einsatz von Biomaterialien in Filtersystemen – BioFis

In: Bernotat, A. & Berling, J., Prototype Nature

Mertgen A.-S., Trossmann V., Guex A., Maniura-Weber K., Scheibel T., Rottmar M.

Multifunctional biomaterials – Combining material modification strategies for engineering

ACS Appl. Mater. Interface, online first, 0c01893

Murugesan S., Scheibel T.

Copolymer clay nanocomposites for biomedical applications

Adv. Funct. Mater., online first, 1908101

Humenik M., Preiß T., Goedrich S., Papastavrou G., Scheibel T.

Functionalized DNA spider silk nanohydrogels for controlled protein binding and release

Materials Today Bio, 6, 100045

Aigner T. B., Haynl C., Salehi S., O'Connor A., Scheibel T.

Nerve guidance conduit design based on self-rolling tubes

Materials Today Bio, 5, 100042

Salehi S., Koeck K., Scheibel T.

Spider silk for tissue engineering applications

Molecules, 25, 737-757

Fratzl P., Jacobs K., Möller M., Scheibel T., Sternberg K.

Material Science – Inspired by Nature

acatech Diskussion, 2020

Bruns N., Scheibel T.

Biomimetic Polymers – Editorial

Europ. Polym. J., 122, 109370

Humenik M., Pawar K., Scheibel T.

Nanostructured, self-assembled spider silk materials for biomedical applications

In: S. Perrett et al. (eds.), Biological and Bio-inspired Nanomaterials, (Advances in Experimental Medicine and Biology 1174), 187-221

Borkner C. B., Lentz S., Müller M., Fery A., Scheibel T.

Ultra-thin spider silk films: Insights into spider silk assembly on surfaces

ACS Appl. Polym. Mater., 1, 3366-3374

Kumari S., Bargel H., Scheibel T.

Recombinant spider silk silica hybrid scaffolds with drug releasing properties

Macromol. Rapid Commun., 41, 1900426

Pawar K., Welzel G., Haynl C., Schuster S., Scheibel T.

Recombinant spider silk and collagen-based nerve guidance conduits

ACS Appl. Bio Mater., 2, 4872−4880

DeSimone E., Aigner T. B., Humenik M., Lang G., Scheibel T.

Aqueous electrospinning of recombinant spider silk proteins

Mater. Sci. Eng. C, 106, 110145

Saric M., Scheibel T.

Engineering of silk proteins for materials applications

Curr. Opin. Biotechnol., 60, 213–220

Steiner D., Lang G., Fischer L., Winkler S., Fey T., Greil P., Scheibel T., Horch R. E., Arkudas A.

Intrinsic vascularisation of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model

Tissue Eng. Part A,  25, 21-22  

Aigner T. B., Scheibel T.

Self-rolling refillable tubular enyme containers

ACS Appl. Mater. Interfaces 2019, 11, 15290-15297

Wang J., Suhre M. H., Scheibel, T.

A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity

Europ. Polym. J., 113, 305–312

Nichtl A., Buchner J., Jaenicke R., Rudolph R., Scheibel T.

Folding and association of β-galactosidase

J. Mol.Biol. 282, 5, 1083-1091

Scheibel T., Buchner J.

Hsp90 proteins – The Hsp90 Family

Guideb. Mol. Chaperones Protein-Folding Catal. 151.

Scheibel T., Neuhofen S., Weikl T., Mayr C., Reinstein J., Vogel P. D., Buchner J.

ATP binding properties of human Hsp90

J. Biol. Chem. 272, 18608-18613

Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J.

Assessment of the ATP binding properties of Hsp90

J. Biol. Chem. 271, 10035–10041

Scheibel T., Bell S., Walke S.

S. cerevisiae and sulfur – a unique way to deal with the environment

FASEB J. 11, 917-921

Scheibel T.,

Scheibel T., Parthasarathy R., Sawicki G., Lin X-M., Jaeger H., Lindquist S.

Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition

Proc. Natl. Acad. Sci. USA 100, 4527-4532

Scheibel T

Amyloid formation of a yeast prion determinant

J. Mol. Neurosci. 23, 13-22

Scheibel T., Buchner J.

Book Review: Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease: Principles and Methods.

Chem.Bio.Chem. 5, 1153-1154

Scheibel T.

Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins

Microb. Cell Fact. 3, 14-21

Scheibel T., Bloom J., Lindquist S L.

The elongation of yeast prion fibers involves separable steps of association and conversion

Proc. Natl. Acad. Sci. USA 101, 2287-2292

Huemmerich D., Helsen C W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T.

Primary structure elements of dragline silks and their contribution to protein solubility and assembly

Biochemistry 43, 13604-13612

Huemmerich D., Scheibel T., Vollrath F., Cohen S., Gat U., Ittah S.

Novel assembly properties of recombinant spider dragline silk protein

Curr. Biol. 14, 2070-2074

Scheibel T., Serpell L.

Methods to study fibril formation

Protein Folding Handb.Vol. II, pp. 193-249

Scheibel T.

Protein fibers as performance proteins: new technologies and applications

Curr. Opin. Biotech. 16, 427-433

Junger A., Kaufmann D., Scheibel T., Weberskirch R.

Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment

Macromol. Biosciences 5, 494-501

Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.

Spatial stochastic resonance in protein hydrophobicity

Phys. Lett. A. 346, 33-41

Scheibel T., Vendrely C.

Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms

Prions: New Res. pp. 251-284

Scheibel T., Buchner J.

Protein Aggregation as a Cause for Disease

Handb. Exp. Pharmacol. 199-219

Scheibel T.

Editorial: Silk–a biomaterial with several facets

Appl. Phys. A 82, 191-192

Huemmerich D., Slotta U., Scheibel T.

Processing and modification of films made from recombinant spider silk proteins

Appl. Phys. A 82, 219-222

Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.

Statistical approaches for investigating silk properties

App. Phy. A . 82, 2,  243–251

Junghans F., Morawietz M., Conrad U., Scheibel T., Heilmann A., Spohn U.

Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

Appl. Phys. A. 82, 253-260

Rammensee S., Huemmerich D., Hermanson K., Scheibel T., Bausch A.

Rheological characterisation of recombinant spider silk nanofiber networks

Appl. Phys. A 82, 261-264

Slotta U., Tammer M., Kremer F., Koelsch P., Scheibel T.

Structural analysis of films cast from recombinant spider silk proteins

Supramol. Chem. 18, 465-471

Sen Gupta S., Scheibel T.

Folding, self-assembly and conformational switches of proteins.

Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, 1-33

Scheibel T., Roemer L.

Herstellung und Anwendung von Spinnenseide

 Bionik: Patente aus der Natur, 3, 130-139

Vendrely C., Scheibel T.

Biotechnological production of spider silk proteins enables new applications

Macromol Biosci. 7, 4, 401-409.

Römer L., Scheibel T.

Grundlagen für neue Materialien – Seidenproteine

Chemie i. u. 41, 306-314

Lodderstedt G., Hess S., Hause G., Scheuermann T., Scheibel T., Schwarz E.

Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1

FEBS. J.274, 2, 346-355.

Slotta U., Hess S., Spiess K., Stromer T., Serpell L., Scheibel T.

Spider silk and amyloid fibrils – a structural comparison

Macromol. Biosci. 7, 183-188

Exler J H., Hümmerich D., Scheibel T.

The amphiphilic properties of spider silks are important for spinning

Angew. Chem. Int. Edit. 46, 3559-3562

Hermanson K D., Huemmerich D., Scheibel T., Bausch A R.

Engineered microcapsules made of reconstituted spider silk

Adv. Mater. 19, 1810-1815

Schmidt M., Romer L., Strehle M., Scheibel T.

Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media

Biotechnol. Lett. 29, 1741-1744

Metwalli E., Slotta U., Darko C., Roth S V., Scheibel T., Papadakis C M.

Structural changes of thin films from recombinant spider silk proteins upon post treatment

Appl. Phys. A. 89, 655-661

Dong J., Bloom D J., Goncharov V., Chattopadhyay M., Millhauser L G., Lynn G D., Scheibel T., Susan L.

Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions

J. Biol. Chem. 282, 47, 34204–34212

Scheibel T, Römer L., Spieß K., Slotta U.

Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand

GIT Labor-Fachz. 11, 928-931

Hess S., Lindquist S., Scheibel T.

Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM

EMBO Rep. 8,1196-1201

Hermanson K D., Harasim M B., Scheibel T., Bausch A R.

Permeability of silk microcapsules made by the interfacial adsorption of protein

Phys. Chem. Chem. Phys. 9, 6442-6446

Vendrely C., Ackerschott C., Römer L., Scheibel T.

Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials

Methods. Mol. Biol. 474, 3-14.

Lammel A., Keerl D., Römer L., Scheibel T.

Proteins: Polymers of natural origin

In: J. Hu (Ed.), Recent Advances in Biomaterials Research, 1-22

Scheibel T., Weidenauer U.

Spinnenseidenproteine als pharmazeutischer Hilfsstoff

Dtsch. Apoth. Ztg. 48, 29.

Römer L., Scheibel T.

Spinnen wie die Spinnen

Nachrichten a. d. Chem. 56, 516-519

Hardy J., Römer L ., Scheibel T.

Polymeric materials based on silk proteins

Polymer 49, 4309-4327

Krammer C., Suhre M.H., Kremmer E., Diemer C., Hess S., Schätzl H.M., Scheibel T., Vorberg I.

Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells

FASEB J. 22, 762-773

Geisler M., Pirzer T., Ackerschott C., Lud S., Garrido A.J., Scheibel T., Hugel T.

Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study

Langmuir 24, 1350-1355

Horinek D., Serr A., Geisler M., Pirzer T., Slotta U.K., Lud S.Q., Garrido J.A., Scheibel T., Hugel T., Netz R.R.

Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces

Proc. Natl. Acad. Sci. USA. 105, 2842-2847

Scheibel T, S. Rammensee, U. Slotta, A. R. Bausch

Assembly mechanism of recombinant spider silk proteins

Proc. Natl. Acad. Sci. USA. 105, 6590-6595

Lammel A., Schwab M., Slotta U.K., Winter G., Scheibel T.

Processing conditions for spider silk microsphere formation

ChemSusChem 5, 413-416

Slotta U.K., Rammensee S., Gorb S., Scheibel T.

An engineered spider silk protein forms microspheres

Angew. Chem. Int. Ed. 47, 4592-459

Liebmann B., Hümmerich D., Scheibel T., Fehr M.

Formulation of poorly water-soluble substances using self-assembling spider silk protein

Colloids Surf., A 331, 126-132

Heim M., Keerl D., Scheibel T.

Spider Silk: From Soluble Protein to Extraordinary Fibers

Angew. Chem. Int. Edit. 48, 3584-3596

Scheibel T

Spinnenseide: Was Spiderman wissen sollte

Biospektrum

Römer L., Scheibel T.

The elaborate structure of spider silk: Structure and function of a natural high performance fiber

Prion 2, 154-161

Heim M., Römer L., Scheibel T.,

Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein

Chem. Soc. Rev. 39, 156–164

Grunwald I., Rischka K., Kast S M., Scheibel T., Bargel H.

Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein

Phil. Trans. Roy. Soc. London: A 367, 1727-1747

Hardy J G., Scheibel T.

Production and processing of spider silk proteins

J. Polymer. Sci.Part A: Polymer .Chem. 47, 3957–3963

Hardy J G., Scheibel T.

Silk-inspired polymers and proteins

Biochem. Soc. Trans. 37, 677–681

Smith A M., Scheibel T.

Functional amyloids used by organisms: A lesson in controlling assembly

Macromol. Chem. Phys. 210, 127-135

Hagenau A., Scheidt H A., Serpell L., Huster D., Scheibel T.

Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis

Macromol. Biosciences 9, 162-168

Krammer C., Kryndushkin D., Suhre M H., Kremmer E., Hofmann A., Pfeifer A., Scheibel T., Wickner R B., Schätzl H M., Vorberg I.

The yeast Sup35NM domain propagates as a prion in mammalian cells

Proc. Natl. Acad. Sci. USA 106, 462-467

Pirzer T., Geisler M., Scheibel T., Hugel T.

Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

Physical Biol. J. 6, 025004

Vézy C., Hermanson.D K., Scheibel T., Bausch A R.

Interfacial rheological properties of recombinant spider-silk proteins

Biointerphases 4, 43-46

Suhre M H., Hess S., Golser A V., Scheibel T.

Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM

J. Inorg. Biochem. 120, 1711-1720

Heim M., Römer L., Scheibel T.

Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins

Chem. Soc. Rev.39, 156–164

Egaña-L A., Scheibel T.

Silk-based materials for biomedical applications

Biotechnol. Appl. Biochem. 55, 155–167

Hardy J G., Scheibel T.

Composite materials based on silk proteins

Progr. Polymer Sci. 35, 1093-1115

Spiess K., Lammel A., Scheibel T.

Recombinant spider silk proteins for applications in biomaterials

Macromol. Biosciences. 10, 998-1007

Scheibel T.

Advanced Biomaterials

Macromol. Biosciences. 10, 674 

Scheibel T.

Spider silk from nature to bio-inspired materials

Chem. Fiber. Int. 3, 15-16

Heim M., Ackerschott C B., Scheibel T.

Characterization of recombinantly produced spider flagelliform silk domains

J. Struct. Biol. 170, 420–425

Eisoldt L., Hardy J G., Heim M., Scheibel T.

The role of salt and shear on the storage and assembly of spider silk proteins.

J. Struct. Biol. 170, 413–419

Hagenau A., Scheibel T.

Towards the recombinant production of mussel byssal collagens

J. Adhesion. 86, 10-24

Lammel A S., Hu X., Park S H., Kaplan D L., Scheibel T.

Controlling silk fibroin particle features for drug delivery

Biomaterials. 31, 4583-4591

Hagn F., Eisoldt L., Hardy J G., Vendrely C., Coles M., Scheibel T., Kessler H.

A conserved spider silk domain acts as a molecular switch that controls fibre assembly

Nature 365, 239-242 

Keerl D., Hardy J G., Scheibel T.

Biomimetic spinning of recombinant silk proteins

Mater. Res. Soc. Symp. Proc. 07-20,1239

Spieß K., Wohlrab S., Scheibel T.

Structural characterization and functionalization of engineered spider silk films

Soft Matter. 6, 4168–4174

Humenik M., Scheibel T., Smith A.

Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber

Prog. Mol. Biol. Transl. Sci. 103, 131-185.

Eisoldt L., Smith A., Scheibel T.

Decoding the secrets of spider silk

Materials Today 14, 80–86

Spiess K., Lammel A., Scheibel T.

Recombinant spider silk proteins for applications in biomaterials

Macromol.Biosci.2011, S32-S41

Humenik M., Smith A., Scheibel T.

Recombinant spider silks – biopolymers with potential for future applications

Polymers 3, 640–661  

Hagn F., Thamm C., Scheibel T., Kessler H.

pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation

Angew. Chem. Int. Ed. 50, 310-313

Lammel A., Schwab M., Hofer M., Winter G., Scheibel T.

Recombinant spider silk particles as drug delivery vehicles

Biomaterials 32, 2233–2240  

Hagenaua A., Papadopoulos P., Kremer F., Scheibel T.

Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads

J. Structural Biol. 175, 339-347  

Schacht K., Scheibel T.

Controlled hydrogel formation of a recombinant spider silk protein

Biomacromol. 12, 2488–2495  

Spiess K., Ene R., Keenan C D., Senker J., Kremerb F., Scheibel T.

Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films

J. Mater. Chem. 21, 13594-13604  

Slotta U., Hess S., Spieß K., Stromer T., Serpell L., Scheibel T.

Spider silk and amyloid fibrils: A structural comparison

Macromol. Biosci. 7, 73-90

Eisoldt L., Thamm C., Scheibel T.

The role of terminal domains during storage and assembly of spider silk proteins

Biopolymers 97, 355-361

Claussen K U., Scheibel T., Schmidt H W., Giesa R.

Polymer gradient materials: can nature teach us new tricks?

Macromol. Mater. Eng. 297, 938–957  

Claussen K U., Giesa R., Scheibel T., Schmidt H W.

Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads

Macromol. Rapid Commun. 33, 206-211

Bluem C., Scheibel T.

Control of drug loading and release properties of spider silk sub-microparticles

BioNanoSci. 2, 67-74

Egaña-L A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S., Scheibel T.

Interactions of fibroblasts with different morphologies made of an engineered spider silk protein

Adv.  Eng.  Mater. 14, B67-B75  

Keerl D., Scheibel T.

Characterization of natural and biomimetic spider silk fibers

Bioinspired, Biomimetic Nanobiomater.1, 83-94  

Bauer F., Scheibel T.

Artificial egg stalks made of a recombinantly produced lacewing silk protein

Ang. Chemie Intl. Edit. 124, 6627-6630  

Egañaa-L A., Scheibel T.

Interactions of cells with silk surfaces

J. Mater. Chem. 22, 14330-14336  

Wohlrab S., Müller S., Schmidt A., Neubauer S., Kessler H., Egaña-L A., Scheibel T.

Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins

Biomaterials 33, 6650-6659  

Young L S., Gupta M., Hanske C., Fery A., Scheibel T., Tsukruk V V.

Utilizing conformational changes for patterning thin films of recombinant spider silk proteins

Biomacromol. 13, 10, 3189-3199

Wohlrab S., Spießa K., Scheibel T.

Varying surface hydrophobicities of coatings made of recombinant spider silk proteins

J. Mater. Chem. 22, 22050-22054

Bauer F., Bertinetti L., Masic A., Scheibel T.

Dependence of mechanical properties of lacewing egg stalks on relative humidity

Biomacromolecules. 13, 3730-3735

Smith A., Scheibel T.

Hierarchical Protein Assemblies as a Basis for Materials

In: Materials Design Inspired by Nature: Function Through Inner Architecture (Eds. Fratz P., Dunlop J. W. C., Weinkamer R.), 256-281

Lauterbach A. Y., Scheibel T.

Determining the Environmental Benefit of Artificial Spider Silk Products

NSTI-Nanotech., 3, 108-111  

Wohlrab S., Thamm C., Scheibel T.

The Power of Recombinant Spider Silk Proteins

In: Biotechnology of Silk (Eds Asakura T., Miller T.), 179-201

Heidebrecht A., Scheibel T.

Recombinant production of spider silk proteins

Adv. Appl. Microbiol. 82, 115-153  

Lintz E. S., Scheibel T.

Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers

Adv. Funct. Mater., 23, 4467–4482  

Scheibel T.

Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit

Chemie & More, 4, 3-5

Hofmann J. P., Denner P., Krammer N. C., Kuhn P. H., Suhre M. H., Scheibel T., Lichtenthaler S. F., Schätzl H. M., Bano D., Vorberg I. M.

Cell-to-cell propagation of infectious cytosolic protein aggregates

Proc. Natl. Acad. Sci. U S A., 110, 5951–5956  

Lang G., Jokisch S., Scheibel T.

Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins

J. Vis. Exp., 75, e50492  

Claussen K. U., Lintz E. S., Giesa R., Schmidt H. W., Scheibel T.

Protein gradient films of fibroin and gelatine

Macromol. BioSci., 13, 1396–1403  

Hardy J. G., Leal-Egaña A., Scheibel T.

Engineered spider silk protein-based composites for drug delivery

Macromol. BioSci., 13, 1431–1437  

Neubauer P. M., Blüm C., Agostini E., Engert J., Scheibel T., Fery A.

Micromechanical characterization of spider silk particles

Biomater. Sci., 1, 1160-1165  

Helfricht N., Klug M., Mark A., Kuznetsov V., Blüm C., Scheibel T., Papastavrou G.

Surface properties of spider silk particles in solution

Biomater. Sci., 1, 1166-1171  

Bauer F., Wohlrab S., Scheibel T.

Controllable cell adhesion, growth and orientation on layered silk protein films

Biomater. Sci., 1, 1244-1249  

Blüm C., Nichtl A., Scheibel T.

Spider silk capsules as protective reaction containers for enzymes

Adv. Funct. Mater., 24, 763–768  

Heim M., Elsner M B., Scheibel T.

Lipid-specific ß-sheet formation in a mussel byssus protein domain

Biomacromolecules, 14, 3238-3245  

Keerl D., Scheibel T.

Rheological characterization of silk solutions

Green Materials, 2, 11-23  

Neuenfeldt M., Scheibel T.

Silks From Insects – From Natural Diversity to Application

Insect Molecular Biology and Ecology, 376-400

Scheibel T.

Die Natur als Vorbild für bioinspirierte Materialien der Zukunft

TIB, 33-36

Hagenau A., Suhre H M., Scheibel T.

Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels

Progr. Polym. Sci. 39, 1564-1583

Schacht K, Scheibel T

Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications

Curr. Opin. Biotechnol. 29, 62-69 doi: 10.1016/j.copbio.2014.02.015

Lang G., Scheibel T.

Multifunktionale Spinnenseide – ein vielversprechender Werkstoff

MaschinenMarkt 26, 36-39

Borkner B C., Elsner B M., Scheibel T.

Coatings and films made of silk proteins

Appl. Mater. Interface. 29, 62-69

Zollfrank C., Scheibel T., Seitz H., Travitzky N.

Bioinspired materials engineering

Ullmann’s Encycl. Ind. Chem.

Humenik M., Scheibel T.

Self-assembly of nucleic acids, silk and hybrid materials thereof

J. Phys. Condens. Matter 26, 503102

Heidebrecht A., Scheibel T.

Spionik – Biotech Spinnenseide und ihre Einsatzgebiete

GIT Bioforum 2, 20-22

Humenik M., Scheibel T.

Nanomaterial building blocks based on spider silk–oligonucleotide conjugates

ACS Nano 8, 1342-1349

Zeplin.H P., Maksimovikj C N., Jordan C M., Nickel J., Lang G., Axel H., Römer L., Scheibel T.

Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation

Adv. Funct. Mater. 24, 2658–2666 doi: 10.1002/adfm.201302813

Pinto-S D J R., Lamprecht G., Chen W Q., Heo S., Hardy J G., Priewalder H., Scheibel T., Palma M S., Lubec G.

Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders

J. Prot., 105, 174–185

Suhre M H., Gertz M., Steegborn C., Scheibel T.

Structural and functional features of a collagen-binding matrix protein from the mussel byssus

Nat. Comm., 5, 3392

Scheibel T., Suhre MH, Gertz M, Steegborn C,

Structural and functional features of a collagen-binding matrix protein from the mussel byssus

J. Struct. Biol. 186, 75-85 doi: 10.1016/j.jsb.2014.02.013

Hardy J G., Pfaff A., Egaña-L A., Müller A H., Scheibel T.

Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion

Macromol. Biosci., 14, 936-42

Suhre.H M., Steegborn C., Gertzb M., Scheibel T.

Crystallization and preliminary X-ray diffraction analysis os PTMP1

Acta. Cryst. Sec. 70, 769-772  

Humenik M., Magdeburg M., Scheibel T.

Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins

J. Struct. Biol., 186, 431-437

Humenik M., Markus D., Scheibel T.

Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies

Nano Lett.., 14, 3999−4004

Lauterbach Y A., Scheibel T.

Life cycle assessment of spider silk nonwoven meshes in an air filtration device

Green Materials., 3: 15-24

Zeplin H P., Berninger K A., Maksimovikj C N., Gelder V P., Scheibel T., Walles H.

Verbesserung der Biokompatibilität von Silikonimplantaten

Handchir. Mikrochir. Plast. Chir., 46: 336-41

Scheibel T.

Engineering of rec SSP allows defined drug uptake and release

TechConnect Briefs: Biotech, Biomaterials, and Biomedical 1-4

DeSimone E., Schacht K., Jungst T., Groll J., Scheibel T.

Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks

Pure Appl. Chem., 87: 737–749

Doblhofer E, Heidebrecht A, Scheibel T

To spin or not to spin: spider silk fibers and more

Appl. Microbiol. Biotechnol. 99: 9361-9380 doi: 10.1007/s00253-015-6948-8

Jungst T., Smolan W., Schacht K., Scheibel T., Groll J.

Strategies and molecular design criteria for 3D printable hydrogels

Chem. Rev.. 99: 9361-9380

Scheibel T.

Vom Spinnennetz zur High-Tech-Faser

Naturwiss. Rundschau.. 68: 524-525

Scheibel T.

Die Kräfte von Superhelden – Oder: Was Spiderman besser wissen sollte

Vorlesungsreihe KinderUniversität Bayreuth SS 

Doblhofer E., Scheibel T.

Engineering of recombinant spider silk proteins allows defined uptake and release of substances

J. Pharm. Sci, 104: 988-994  

Elsner B M., Herold M H., Herrmann M S., Bargel H., Scheibel T.

Enhanced cellular uptake of engineered spider silk particles

Biomater. Sci., 3: 543–551

Schacht K., Jüngst T., Schweinlin M., Ewald A., Groll J., Scheibel T.

Biofabrication of cell-loaded 3D spider silk constructs

Angew, Chem., 54: 2816–2820

Heidebrecht A., Eisoldt L., Johannes D., Schmidt A., Geffers M., Lang G., Scheibel T.

Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk

Adv. Mater., 27: 2189–2194

Herrmann M S., Scheibel T.

Enzymatic degradation of films, particles and non-woven meshes

ACS Biomater. Sci. Eng., 1: 247–259

Humenik M., Smith A., Arndt S., Scheibel T.

Ion and seed dependent fibril assembly of a spidroin core domain

J. Struct. Biol. 191: 130–138

Humenik M., Smith A M., Arndt S., Scheibel T.

Data for ion and seed dependent fibril assembly of a spidroin core domain

Data in Brief 4: 571–576

Zahn H., Krasowski A., Scheibel T.

Silk

Ullmann’s Encycl. Ind. Chem.

Scheibel T., Groll J., Boccaccini R A., Zehnder T., Jüngst T., Schacht K.

Zellgewebe aus dem Drucker

Nachrichten aus der Chemie, 64: 13-16

Jüngst T., Smolan W., Schacht K., Scheibel T., Groll J.

Strategies and molecular design criteria for 3D printable hydrogels

Chem. Rev., 116: 1496–1539

Bargel H., Scheibel T.

Zukunftsfeld Bionik

UBT Spektrum, 1: 54 – 57

Bauer J., Scheibel T.

Die Schwarze Witwe und ihre Künste

UBT Aktuell, 2: 60 – 63

Caplan L D., Scheibel T.

Recombinant Silk Production in Bacteria

Ref. Module in Materials Science and Engineering.8, 803581-802274 

Peng L., Jiang S., Seuß M., Fery A., Lang G., Scheibel T., Agarwal S.

Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning

Macromol. Mater. Eng. 301: 48-55

Schaal D., Bauer J., Schweimer K., Scheibel T., Rösch P., Schwarzinger S.

Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster

Biomol. NMR Assign. 10: 199-202

Schacht K., Vogt J., Scheibel T.

Foams made of engineered recombinant spider silk proteins

ACS Biomater. Sci. Eng. 2: 517-525

DeSimone E., Schacht K., Scheibel T.

Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins

Mater. Lett.183: 101-104

Haynl C., Hofmann E., Pawar K., Förster S., Scheibel T.

Microfluidics-produced collagen fibers show extraordinary mechanical properties

Nano Lett.16: 5917 – 5922

Borkner B C., Wohlrab S., Lang G., Scheibel T.

Surface modification of polymeric biomaterials using recombinant spider silk proteins

ASC Biomat. Sci.Eng.3, 767 – 775

Schierling B M., Doblhofer E., Scheibel T.

Cellular uptake of drug loaded spider silk particles

Biomater. Sci. 4: 1515-1523  

Helfricht N., Doblhofer E., Duval L F J., Scheibel T., Papastavrou G.

Colloidal properties of recombinant spider silk protein particles

J. Phys. Chem. C.120, 18015 – 18027

Doblhofer E., Schmid J., Rieß M., Daab M., Suntinger M., Habel C., Bargel H., Hugenschmidt C., Rosenfeldt S., Breu J., Scheibel T.

Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties

Appl. Mater. Interfaces.8, 25535 – 25543

Bauer J., Schaal D., Eisold L., Schweimer K., Schwarzinger S., Scheibel T.

Acidic residues control the dimerization of the N-terminal domain of Black Widow spiders’ Major Ampullate Spidroin 1

Sci. Rep. 6, 34442

Helfricht N., Doblhofer E., Bieber V., Lommes P., Sieber V., Scheibel T., Papastavrou G.

Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement

Soft Matter. 13: 578 – 589  

Lang G., Neugirg R B., Kluge D., Fery A., Scheibel T.

Mechanical testing of engineered spider silk filaments

ACS Appl. Mater. Interfaces, 9: 892 – 900

Bauer J., Scheibel T.

Conformational stability and interplay of N- and C-terminal domains

Biomacromolecules, 18, 835 – 845

Thamm C., Scheibel T.

Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)

Biomacromolecules, 18: 1365 – 1372

Neuenfeldt M., Scheibel T.

Sequence identification, recombinant production, and analysis of the self-assembly of egg stalk silk proteins from lacewing Chrysoperla carnea

Biomolecules, 7: 43

Bauer J., Scheibel T.

Dimerization of the conserved N-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain

Biomacromolecules, 18: 2521 – 2528  

Thamm C., DeSimone E., Scheibel T.

Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing

Macromol. Biosci., 11: 1700141

Golser A. V., Scheibel T.

Biotechnological production of the mussel byssus derived collagen preColD

RSC Adv. 7: 38273 – 38278  

Petzold J., Touska F., Zimmermann K., Scheibel T., Engel B F.

Surface features of recombinant spider silk protein eADF4(κ16)-made materials are well-suited for cardiac tissue engineering

Adv. Funct. Mater., 27: 1701427

Scheibel T.

Applicability of biotechnologically produced insect silks

Zeitschrift für Naturforschung,72, 365-385

Jokisch S., Neuenfeldt M., Scheibel T

Silk-based fine dust filters for air filtration

Adv. Sustainable Syst., 1: 1700079 doi:10.1002/adsu.201700079

Anton A. M., Heidebrecht A., Mahmood N., Beiner M., Scheibel T., Kremer F.

Foundation of the outstanding toughness in biomimetic and natural spider silk

Biomacromolecules, 8: 3954 – 3962

DeSimone E., Schacht K., Alexandra P., Scheibel T.

Recombinant spider silk-based bioinks

Biofabrication 9, 4, 044104

Wicklein V. J., Singer B. B., Scheibel T., Salehi S.

Nanoengineered biomaterials for corneal regeneration

In: Nanoengineered Biomaterials for Regenerative Medicine. Micro- and Nano Technologies, Elsevier: 379-415

Jokisch S., Bargel H., Scheibel T.

Einsatz von Biomaterialien in Filtersystemen

In: Prototype Nature 

Bargel H., Scheibel T.

Bio-inspirierte Materialien

MNU Journal, 1: 4-10

Bargel H., Scheibel T.

Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge

MNU Journal, 1: 37 – 44

Humenik M., Lang G., Scheibel T.

Silk nanofibril self-assembly versus electrospinning

Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10: e1509  

Haug M., Reischl B., Prölß G., Pollmann C., Buckert T., Keidel C., Schürmann S., Hock M., Rupitsch S., Heckel M., Pöschel T., Haynl C., Kiriaev L., Head S. L., Friedrich O., Scheibel T.

The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials

Biosens. Bioelectron., 102: 589 – 599  

Mickoleit F., Borkner C. B., Toro-Nahuelpan M., Herold, H. M., Maier D. S., Plitzko J. M., Schüler D., Scheibel T.

In-vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides

Biomacromolecules, 19: 962 – 972

Salehi S., Scheibel T.

Biomimetic spider silk fibres: from vision to reality

The Biochemist, 40: 4 – 7

Aigner T. B., DeSimone E., Scheibel T.

Biomedical Applications of Recombinant Silk-Based Materials

Adv. Mater., 30: 1704636  

Lintz E. S., Neinhuis C., Scheibel T.

Altering silk film surface properties through Lotus-like mechanisms

Macromol. Mater. Eng., 303: 1700637

Golser A. V., Scheibel T.

Routes towards novel collagen-like biomaterials

Fibers, 6: 21  

Kumari S., Bargel H., Anby M. U., Lafargue D., Scheibel T.

Recombinant spider silk hydrogels for sustained release of biologicals

ACS Biomater., 4: 1750 – 1759  

Lucke M., Mottas I., Herbst T., Hotz C., Römer L., Schierling M., Slotta U., Spinetti T., Scheibel T., Winter G. T., Bourquin C., Engert J.

Engineered spider silk hybrid particles as delivery system for peptide vaccines

Biomaterials, 172, 105 – 115   

Golser A. V., Röber M., Börner H. G., Scheibel T.

Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces

ACS Biomater. Sci. Eng., 4: 2106 – 2114

Hofmann E., Krüger K., Haynl C., Scheibel T., Trebbind M., Förster S.

Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter contro

LabChip,18, 2225-2234

Scheibel T.

Recombinant production of mussel byssus inspired proteins

Biotechnol. J., 13: 1800146

Molina A., Humenik M, Scheibel T.

Nanoscale patterning of surfaces via DNA directed spider silk assembly

Biomacromol., 20, 347-352

Zha H. R., Delparastan P., Fink D. T., Bauer J., Messersmith P. B., Scheibel T.

Universal nanothin silk coatings via controlled spidroin self-assembly

Biomater. Sci., 2019, 7, 683-69

Röber M., Laroque S., Scheibel T., Börner H.-G.

Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides

Euro. Polym. J., 112, 301 – 305  

Herold H. M., Aigner T. B., Grill C., Krüger S., Taubert A., Scheibel T.

Spider-MAEN recombinant spider silk based hybrid materials

Bioinspired, Biomimetic Nanobiomater., 8, 99-108

Suhre H M., Scheibel T.

A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant_supplement

Europolymj. 113, 305 – 331  

Humenik M., Mohrand M., Scheibel T.

Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.

Bioconjugate Chem., 29: 898 – 904.

Scheibel T

Herstellung und Anwendung von Spinnenseide

Bionik. Patente aus der Natur 3. Bionik Konferenz. 130-139

Smith M A., Scheibel T.

Functional amyloids used by organisms: A lesson in controlling assembly

Macromol. Chem. Phys. 210, 127-135

Spieß K., Wohlrab S., Scheibel T.

Structural characterization and functionalization of engineered spider silk films

Soft Matter 6, 4168–4174

Lang G., Herold H., Scheibel T.

Properties of engineered and fabricated silks

 Fibrous Proteins. Structures and Mechanisms. Subcell. Biochem., 82: 527-573

DeSimone E., Pellert A., Schacht K., Scheibel T.

Recombinant spider silk-based bioinks

Biofabrication, 9: 044104  

Wang J., Scheibel T.

Coacervation of the recombinant Mytilus galloprovincialis foot protein-3b

Biomacromolecules, 19: 3612 – 3619

Roshanbinfar K., Vogt L., Greber B., Diecke S., Boccaccini A. R., Scheibel T., Engel F. B.

Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues

Adv. Funct. Mat., 28: 1803951

Hardy J. G., Bertin A., Torres‐Rendon J. G., Leal‐Egaña A., Humenik M., Bauer, F., Walther A., Cölfen H., Schlaad H., Scheibel T.

Facile photochemical modification of silk protein-based biomaterials

Macromol. Biosci., 28: 1800216

Back to Top

Icons made by Freepik from www.flaticon.com is licensed by CC 3.0 BY