Tissue Engineering
The subgroup “Tissue Engineering” aims to develop, design and process specific soft or hard tissue biomaterials in different geometries, morphologies and structures. The behaviour and interaction of cells in contact with fabricated scaffolds is studied under the simulated body condition and different electrical, chemical and mechanical stimuli.
The development of a range of hybrid bioinks using recombinant spider silk protein eADF4 (C16) and biopolymers along with functional nanomaterials like magnetic particles for 3D cell printing is our focus. Moreover, the fabrication of functional tissues like vascularised bone as a model is currently studied to evaluate the behaviour and interaction of cells in contact with fabricated scaffolds under different electrical, chemical, magnetic and mechanical stimulus.
Research Projects

Müller, Claudia
claudia.mueller(.at.)bm.uni-bayreuth.de
0921-55 6713
Project description needs to be updated.

Mayer, Kai
kai.mayer(.at.)bm.uni-bayreuth.de
0921 55-6706
One major advantage in working with engineered Araneus diadematus fibrion 4 (eADF4(C16)) is the possibility of site-specific protein modification. Utilizing a molecular biology approach, the silk proteins can be tailored to specific applications. Two projects are based on this approach:
Project 1: Cellulose-binding spider silk protein
Here, the gene sequence of a cellulose-binding domain (CBD) is fused with the eADF4(C16) sequence to yield spider silk proteins that can interact with cellulose. This project is part of a joint project with the TU Munich which aims to produce optical wave guides based on recombinant spider silk and nanocellulose.
Project 2: Spider silk for cardiovascular applications
In this project, an endothelial cell-binding peptide is fused with eADF4(C16) to enhance adhesion and proliferation of endothelial cells on the materials surface. The main objective is to use this protein in cardiovascular tissue engineering.
Publications
Strassburg, S., Mayer, K. & Scheibel, T.
Functionalization of biopolymer fibers with magnetic nanoparticles
Physical Sciences, online Jan. 21
Neubauer, V., Kellner, Ch., Gruen, V., Schenk, A. & Scheibel, T.
Recombinant major ampullate spidroin-particles as biotemplates for manganese carbonate mineralization
Multifunct. Materials, 2021, 4 014002
Neubauer, V., Döbl, A. & Scheibel, T.
Silk-based materials for hard tissue engineering
Materials, 2021, 14 (3), 674
Saric, M., Eisoldt, L., Döring, V. & Scheibel, T.
Interplay of different Major Ampullate spidroins during assembly and implications for fiber mechanics
Advanced Materials, online Jan. 2021
Hofmaier, M., Urban, B., Lentz, S., Borkner, C., Scheibel, T., Fery, A. & Müller, M.
Dichroic Fourier Transform Infrared Spectroscopy characterization of the β-sheet orientation in spider silk films on silicon substrates
Journal of Physical Chemystry, online Jan. 2021
Humenik, M., Winkler, A. & Scheibel, T.
Patterning of protein-based materials
Biopolymers, 2020; online Dec. 2020
Bargel, H., Hopfe, Ch. & Scheibel, T.
Proteinfasern als Hochleistungsmaterial
Biologie in unserer Zeit, 2020, Vol. 50 (6), 434 – 443
Müller, F. Bin Zainuddin, M. S. & Scheibel, T.
Roll-to-Roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration Applications
Molecules 2020, 25(23), 5540
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N. und Scheibel, T.
Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials
Data in Brief, Vol. 32, Okt.2020
Neubauer, V. & Scheibel, T.
Spider silk fusion proteins for controlled collagen binding and biomineralization
ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608
Haynl, C., Vongsvivut, J., Mayer, K., Bargel, H., Neubauer, V., Tobin, M., Elgar, M. & Scheibel, T.
Free‑standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro‑ and submicron fibers
Sci Rep, 10, 17624 (2020)
Müller, F., Jokisch, S., Bargel, H. & Scheibel, T.
Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers
ASC Applied Polymer Materials,2020 2 (11), 4360-4367
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel , M., Jacobs, K., Krämer, N. & Scheibel, T.
Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials
Data in Brief, Vol. 32, Oct. 2020
Neubauer, V., Scheibel, T.
Spider silk fusion proteins for controlled collagen binding and biomineralization
ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608
Hopfe, C., Ospina-Jara, B., Scheibel, T., Cabra-Garcia, J.
Ocrepeira klamt sp. n. (Araneae: Araneidae), a novel spider species from an Andean pa´ramo in Colombia
PLOS One
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N., Scheibel, T.
Engineered spider silk-based 2D and 3D materials prevent microbial infestation
Mathilde Lefevre, Patrick Flammang , A. Sesilja Aranko , Markus B. Linder , Thomas Scheibel , Martin Humenik , Maxime Leclercq , Mathieu Surin , Lionel Tafforeau, Ruddy Wattiez, Philippe Leclère, Elise Hennebert
Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings
Scheibel T., Weikl T., Buchner J.
Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence
Proc. Natl. Acad. Sci. U S A. 4, 1495- 1499.
Scheibel T., Buchner J.
The Hsp90 complex – a super-chaperone machine as a novel drug target
Biochem. Pharmacol. 6, 675-682.
Scheibel T., Siegmund H. I., Jaenicke R., Ganz P., Lilie H., Buchner J.
The charged region of Hsp90 modulates the function of the N-terminal domain
Proc. Natl. Acad. Sci. U S A. 4, 1297-302
Thomas Scheibel
Spider silk-based biomaterials: a new opportunity for product development in many industries
Weiss A. C. G., Herold H. M., Lentz S., Faria M., Besford Q. A., Ang C.-S., Caruso F., Scheibel T.
Surface modification of spider silk particles to direct biomolecular corona formation
Kramer J. P. M., Aigner T. B., Petzold J., Roshanbinfar K., Scheibel T., Engel F. B.
Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering
Jokisch, S., Bargel, H., Scheibel, T.
Einsatz von Biomaterialien in Filtersystemen – BioFis
In: Bernotat, A. & Berling, J., Prototype Nature
Mertgen A.-S., Trossmann V., Guex A., Maniura-Weber K., Scheibel T., Rottmar M.
Multifunctional biomaterials – Combining material modification strategies for engineering
ACS Appl. Mater. Interface, online first, 0c01893
Murugesan S., Scheibel T.
Copolymer clay nanocomposites for biomedical applications
Adv. Funct. Mater., online first, 1908101
Humenik M., Preiß T., Goedrich S., Papastavrou G., Scheibel T.
Functionalized DNA spider silk nanohydrogels for controlled protein binding and release
Materials Today Bio, 6, 100045
Aigner T. B., Haynl C., Salehi S., O'Connor A., Scheibel T.
Nerve guidance conduit design based on self-rolling tubes
Materials Today Bio, 5, 100042
Salehi S., Koeck K., Scheibel T.
Spider silk for tissue engineering applications
Molecules, 25, 737-757
Fratzl P., Jacobs K., Möller M., Scheibel T., Sternberg K.
Material Science – Inspired by Nature
acatech Diskussion, 2020
Bruns N., Scheibel T.
Biomimetic Polymers – Editorial
Europ. Polym. J., 122, 109370
Humenik M., Pawar K., Scheibel T.
Nanostructured, self-assembled spider silk materials for biomedical applications
In: S. Perrett et al. (eds.), Biological and Bio-inspired Nanomaterials, (Advances in Experimental Medicine and Biology 1174), 187-221
Borkner C. B., Lentz S., Müller M., Fery A., Scheibel T.
Ultra-thin spider silk films: Insights into spider silk assembly on surfaces
ACS Appl. Polym. Mater., 1, 3366-3374
Kumari S., Bargel H., Scheibel T.
Recombinant spider silk silica hybrid scaffolds with drug releasing properties
Macromol. Rapid Commun., 41, 1900426
Pawar K., Welzel G., Haynl C., Schuster S., Scheibel T.
Recombinant spider silk and collagen-based nerve guidance conduits
ACS Appl. Bio Mater., 2, 4872−4880
DeSimone E., Aigner T. B., Humenik M., Lang G., Scheibel T.
Aqueous electrospinning of recombinant spider silk proteins
Mater. Sci. Eng. C, 106, 110145
Saric M., Scheibel T.
Engineering of silk proteins for materials applications
Curr. Opin. Biotechnol., 60, 213–220
Steiner D., Lang G., Fischer L., Winkler S., Fey T., Greil P., Scheibel T., Horch R. E., Arkudas A.
Intrinsic vascularisation of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model
Tissue Eng. Part A, 25, 21-22
Aigner T. B., Scheibel T.
Self-rolling refillable tubular enyme containers
ACS Appl. Mater. Interfaces 2019, 11, 15290-15297
Wang J., Suhre M. H., Scheibel, T.
A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity
Europ. Polym. J., 113, 305–312
Nichtl A., Buchner J., Jaenicke R., Rudolph R., Scheibel T.
Folding and association of β-galactosidase
J. Mol.Biol. 282, 5, 1083-1091
Scheibel T., Buchner J.
Hsp90 proteins – The Hsp90 Family
Guideb. Mol. Chaperones Protein-Folding Catal. 151.
Scheibel T., Neuhofen S., Weikl T., Mayr C., Reinstein J., Vogel P. D., Buchner J.
ATP binding properties of human Hsp90
J. Biol. Chem. 272, 18608-18613
Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J.
Assessment of the ATP binding properties of Hsp90
J. Biol. Chem. 271, 10035–10041
Scheibel T., Bell S., Walke S.
S. cerevisiae and sulfur – a unique way to deal with the environment
FASEB J. 11, 917-921
,
Scheibel T., Parthasarathy R., Sawicki G., Lin X-M., Jaeger H., Lindquist S.
Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition
Proc. Natl. Acad. Sci. USA 100, 4527-4532
Scheibel T
Amyloid formation of a yeast prion determinant
J. Mol. Neurosci. 23, 13-22
Scheibel T., Buchner J.
Book Review: Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease: Principles and Methods.
Chem.Bio.Chem. 5, 1153-1154
Scheibel T.
Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Microb. Cell Fact. 3, 14-21
Scheibel T., Bloom J., Lindquist S L.
The elongation of yeast prion fibers involves separable steps of association and conversion
Proc. Natl. Acad. Sci. USA 101, 2287-2292
Huemmerich D., Helsen C W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T.
Primary structure elements of dragline silks and their contribution to protein solubility and assembly
Biochemistry 43, 13604-13612
Huemmerich D., Scheibel T., Vollrath F., Cohen S., Gat U., Ittah S.
Novel assembly properties of recombinant spider dragline silk protein
Curr. Biol. 14, 2070-2074
Scheibel T., Serpell L.
Methods to study fibril formation
Protein Folding Handb.Vol. II, pp. 193-249
Scheibel T.
Protein fibers as performance proteins: new technologies and applications
Curr. Opin. Biotech. 16, 427-433
Junger A., Kaufmann D., Scheibel T., Weberskirch R.
Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment
Macromol. Biosciences 5, 494-501
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Spatial stochastic resonance in protein hydrophobicity
Phys. Lett. A. 346, 33-41
Scheibel T., Vendrely C.
Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms
Prions: New Res. pp. 251-284
Scheibel T., Buchner J.
Protein Aggregation as a Cause for Disease
Handb. Exp. Pharmacol. 199-219
Scheibel T.
Editorial: Silk–a biomaterial with several facets
Appl. Phys. A 82, 191-192
Huemmerich D., Slotta U., Scheibel T.
Processing and modification of films made from recombinant spider silk proteins
Appl. Phys. A 82, 219-222
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Statistical approaches for investigating silk properties
App. Phy. A . 82, 2, 243–251
Junghans F., Morawietz M., Conrad U., Scheibel T., Heilmann A., Spohn U.
Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm
Appl. Phys. A. 82, 253-260
Rammensee S., Huemmerich D., Hermanson K., Scheibel T., Bausch A.
Rheological characterisation of recombinant spider silk nanofiber networks
Appl. Phys. A 82, 261-264
Slotta U., Tammer M., Kremer F., Koelsch P., Scheibel T.
Structural analysis of films cast from recombinant spider silk proteins
Supramol. Chem. 18, 465-471
Sen Gupta S., Scheibel T.
Folding, self-assembly and conformational switches of proteins.
Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, 1-33
Scheibel T., Roemer L.
Herstellung und Anwendung von Spinnenseide
Bionik: Patente aus der Natur, 3, 130-139
Vendrely C., Scheibel T.
Biotechnological production of spider silk proteins enables new applications
Macromol Biosci. 7, 4, 401-409.
Römer L., Scheibel T.
Grundlagen für neue Materialien – Seidenproteine
Chemie i. u. 41, 306-314
Lodderstedt G., Hess S., Hause G., Scheuermann T., Scheibel T., Schwarz E.
Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1
FEBS. J.274, 2, 346-355.
Slotta U., Hess S., Spiess K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils – a structural comparison
Macromol. Biosci. 7, 183-188
Exler J H., Hümmerich D., Scheibel T.
The amphiphilic properties of spider silks are important for spinning
Angew. Chem. Int. Edit. 46, 3559-3562
Hermanson K D., Huemmerich D., Scheibel T., Bausch A R.
Engineered microcapsules made of reconstituted spider silk
Adv. Mater. 19, 1810-1815
Schmidt M., Romer L., Strehle M., Scheibel T.
Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media
Biotechnol. Lett. 29, 1741-1744
Metwalli E., Slotta U., Darko C., Roth S V., Scheibel T., Papadakis C M.
Structural changes of thin films from recombinant spider silk proteins upon post treatment
Appl. Phys. A. 89, 655-661
Dong J., Bloom D J., Goncharov V., Chattopadhyay M., Millhauser L G., Lynn G D., Scheibel T., Susan L.
Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions
J. Biol. Chem. 282, 47, 34204–34212
Scheibel T, Römer L., Spieß K., Slotta U.
Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand
GIT Labor-Fachz. 11, 928-931
Hess S., Lindquist S., Scheibel T.
Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM
EMBO Rep. 8,1196-1201
Hermanson K D., Harasim M B., Scheibel T., Bausch A R.
Permeability of silk microcapsules made by the interfacial adsorption of protein
Phys. Chem. Chem. Phys. 9, 6442-6446
Vendrely C., Ackerschott C., Römer L., Scheibel T.
Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials
Methods. Mol. Biol. 474, 3-14.
Lammel A., Keerl D., Römer L., Scheibel T.
Proteins: Polymers of natural origin
In: J. Hu (Ed.), Recent Advances in Biomaterials Research, 1-22
Scheibel T., Weidenauer U.
Spinnenseidenproteine als pharmazeutischer Hilfsstoff
Dtsch. Apoth. Ztg. 48, 29.
Römer L., Scheibel T.
Spinnen wie die Spinnen
Nachrichten a. d. Chem. 56, 516-519
Hardy J., Römer L ., Scheibel T.
Polymeric materials based on silk proteins
Polymer 49, 4309-4327
Krammer C., Suhre M.H., Kremmer E., Diemer C., Hess S., Schätzl H.M., Scheibel T., Vorberg I.
Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells
FASEB J. 22, 762-773
Geisler M., Pirzer T., Ackerschott C., Lud S., Garrido A.J., Scheibel T., Hugel T.
Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study
Langmuir 24, 1350-1355
Horinek D., Serr A., Geisler M., Pirzer T., Slotta U.K., Lud S.Q., Garrido J.A., Scheibel T., Hugel T., Netz R.R.
Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces
Proc. Natl. Acad. Sci. USA. 105, 2842-2847
Scheibel T, S. Rammensee, U. Slotta, A. R. Bausch
Assembly mechanism of recombinant spider silk proteins
Proc. Natl. Acad. Sci. USA. 105, 6590-6595
Lammel A., Schwab M., Slotta U.K., Winter G., Scheibel T.
Processing conditions for spider silk microsphere formation
ChemSusChem 5, 413-416
Slotta U.K., Rammensee S., Gorb S., Scheibel T.
An engineered spider silk protein forms microspheres
Angew. Chem. Int. Ed. 47, 4592-459
Liebmann B., Hümmerich D., Scheibel T., Fehr M.
Formulation of poorly water-soluble substances using self-assembling spider silk protein
Colloids Surf., A 331, 126-132
Heim M., Keerl D., Scheibel T.
Spider Silk: From Soluble Protein to Extraordinary Fibers
Angew. Chem. Int. Edit. 48, 3584-3596
Scheibel T
Spinnenseide: Was Spiderman wissen sollte
Biospektrum
Römer L., Scheibel T.
The elaborate structure of spider silk: Structure and function of a natural high performance fiber
Prion 2, 154-161
Heim M., Römer L., Scheibel T.,
Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein
Chem. Soc. Rev. 39, 156–164
Grunwald I., Rischka K., Kast S M., Scheibel T., Bargel H.
Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein
Phil. Trans. Roy. Soc. London: A 367, 1727-1747
Hardy J G., Scheibel T.
Production and processing of spider silk proteins
J. Polymer. Sci.Part A: Polymer .Chem. 47, 3957–3963
Hardy J G., Scheibel T.
Silk-inspired polymers and proteins
Biochem. Soc. Trans. 37, 677–681
Smith A M., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Hagenau A., Scheidt H A., Serpell L., Huster D., Scheibel T.
Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis
Macromol. Biosciences 9, 162-168
Krammer C., Kryndushkin D., Suhre M H., Kremmer E., Hofmann A., Pfeifer A., Scheibel T., Wickner R B., Schätzl H M., Vorberg I.
The yeast Sup35NM domain propagates as a prion in mammalian cells
Proc. Natl. Acad. Sci. USA 106, 462-467
Pirzer T., Geisler M., Scheibel T., Hugel T.
Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
Physical Biol. J. 6, 025004
Vézy C., Hermanson.D K., Scheibel T., Bausch A R.
Interfacial rheological properties of recombinant spider-silk proteins
Biointerphases 4, 43-46
Suhre M H., Hess S., Golser A V., Scheibel T.
Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM
J. Inorg. Biochem. 120, 1711-1720
Heim M., Römer L., Scheibel T.
Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins
Chem. Soc. Rev.39, 156–164
Egaña-L A., Scheibel T.
Silk-based materials for biomedical applications
Biotechnol. Appl. Biochem. 55, 155–167
Hardy J G., Scheibel T.
Composite materials based on silk proteins
Progr. Polymer Sci. 35, 1093-1115
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol. Biosciences. 10, 998-1007
Scheibel T.
Advanced Biomaterials
Macromol. Biosciences. 10, 674
Scheibel T.
Spider silk from nature to bio-inspired materials
Chem. Fiber. Int. 3, 15-16
Heim M., Ackerschott C B., Scheibel T.
Characterization of recombinantly produced spider flagelliform silk domains
J. Struct. Biol. 170, 420–425
Eisoldt L., Hardy J G., Heim M., Scheibel T.
The role of salt and shear on the storage and assembly of spider silk proteins.
J. Struct. Biol. 170, 413–419
Hagenau A., Scheibel T.
Towards the recombinant production of mussel byssal collagens
J. Adhesion. 86, 10-24
Lammel A S., Hu X., Park S H., Kaplan D L., Scheibel T.
Controlling silk fibroin particle features for drug delivery
Biomaterials. 31, 4583-4591
Hagn F., Eisoldt L., Hardy J G., Vendrely C., Coles M., Scheibel T., Kessler H.
A conserved spider silk domain acts as a molecular switch that controls fibre assembly
Nature 365, 239-242
Keerl D., Hardy J G., Scheibel T.
Biomimetic spinning of recombinant silk proteins
Mater. Res. Soc. Symp. Proc. 07-20,1239
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter. 6, 4168–4174
Humenik M., Scheibel T., Smith A.
Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber
Prog. Mol. Biol. Transl. Sci. 103, 131-185.
Eisoldt L., Smith A., Scheibel T.
Decoding the secrets of spider silk
Materials Today 14, 80–86
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol.Biosci.2011, S32-S41
Humenik M., Smith A., Scheibel T.
Recombinant spider silks – biopolymers with potential for future applications
Polymers 3, 640–661
Hagn F., Thamm C., Scheibel T., Kessler H.
pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation
Angew. Chem. Int. Ed. 50, 310-313
Lammel A., Schwab M., Hofer M., Winter G., Scheibel T.
Recombinant spider silk particles as drug delivery vehicles
Biomaterials 32, 2233–2240
Hagenaua A., Papadopoulos P., Kremer F., Scheibel T.
Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads
J. Structural Biol. 175, 339-347
Schacht K., Scheibel T.
Controlled hydrogel formation of a recombinant spider silk protein
Biomacromol. 12, 2488–2495
Spiess K., Ene R., Keenan C D., Senker J., Kremerb F., Scheibel T.
Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films
J. Mater. Chem. 21, 13594-13604
Slotta U., Hess S., Spieß K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils: A structural comparison
Macromol. Biosci. 7, 73-90
Eisoldt L., Thamm C., Scheibel T.
The role of terminal domains during storage and assembly of spider silk proteins
Biopolymers 97, 355-361
Claussen K U., Scheibel T., Schmidt H W., Giesa R.
Polymer gradient materials: can nature teach us new tricks?
Macromol. Mater. Eng. 297, 938–957
Claussen K U., Giesa R., Scheibel T., Schmidt H W.
Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads
Macromol. Rapid Commun. 33, 206-211
Bluem C., Scheibel T.
Control of drug loading and release properties of spider silk sub-microparticles
BioNanoSci. 2, 67-74
Egaña-L A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S., Scheibel T.
Interactions of fibroblasts with different morphologies made of an engineered spider silk protein
Adv. Eng. Mater. 14, B67-B75
Keerl D., Scheibel T.
Characterization of natural and biomimetic spider silk fibers
Bioinspired, Biomimetic Nanobiomater.1, 83-94
Bauer F., Scheibel T.
Artificial egg stalks made of a recombinantly produced lacewing silk protein
Ang. Chemie Intl. Edit. 124, 6627-6630
Egañaa-L A., Scheibel T.
Interactions of cells with silk surfaces
J. Mater. Chem. 22, 14330-14336
Wohlrab S., Müller S., Schmidt A., Neubauer S., Kessler H., Egaña-L A., Scheibel T.
Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
Biomaterials 33, 6650-6659
Young L S., Gupta M., Hanske C., Fery A., Scheibel T., Tsukruk V V.
Utilizing conformational changes for patterning thin films of recombinant spider silk proteins
Biomacromol. 13, 10, 3189-3199
Wohlrab S., Spießa K., Scheibel T.
Varying surface hydrophobicities of coatings made of recombinant spider silk proteins
J. Mater. Chem. 22, 22050-22054
Bauer F., Bertinetti L., Masic A., Scheibel T.
Dependence of mechanical properties of lacewing egg stalks on relative humidity
Biomacromolecules. 13, 3730-3735
Smith A., Scheibel T.
Hierarchical Protein Assemblies as a Basis for Materials
In: Materials Design Inspired by Nature: Function Through Inner Architecture (Eds. Fratz P., Dunlop J. W. C., Weinkamer R.), 256-281
Lauterbach A. Y., Scheibel T.
Determining the Environmental Benefit of Artificial Spider Silk Products
NSTI-Nanotech., 3, 108-111
Wohlrab S., Thamm C., Scheibel T.
The Power of Recombinant Spider Silk Proteins
In: Biotechnology of Silk (Eds Asakura T., Miller T.), 179-201
Heidebrecht A., Scheibel T.
Recombinant production of spider silk proteins
Adv. Appl. Microbiol. 82, 115-153
Lintz E. S., Scheibel T.
Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers
Adv. Funct. Mater., 23, 4467–4482
Scheibel T.
Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit
Chemie & More, 4, 3-5
Hofmann J. P., Denner P., Krammer N. C., Kuhn P. H., Suhre M. H., Scheibel T., Lichtenthaler S. F., Schätzl H. M., Bano D., Vorberg I. M.
Cell-to-cell propagation of infectious cytosolic protein aggregates
Proc. Natl. Acad. Sci. U S A., 110, 5951–5956
Lang G., Jokisch S., Scheibel T.
Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
J. Vis. Exp., 75, e50492
Claussen K. U., Lintz E. S., Giesa R., Schmidt H. W., Scheibel T.
Protein gradient films of fibroin and gelatine
Macromol. BioSci., 13, 1396–1403
Hardy J. G., Leal-Egaña A., Scheibel T.
Engineered spider silk protein-based composites for drug delivery
Macromol. BioSci., 13, 1431–1437
Neubauer P. M., Blüm C., Agostini E., Engert J., Scheibel T., Fery A.
Micromechanical characterization of spider silk particles
Biomater. Sci., 1, 1160-1165
Helfricht N., Klug M., Mark A., Kuznetsov V., Blüm C., Scheibel T., Papastavrou G.
Surface properties of spider silk particles in solution
Biomater. Sci., 1, 1166-1171
Bauer F., Wohlrab S., Scheibel T.
Controllable cell adhesion, growth and orientation on layered silk protein films
Biomater. Sci., 1, 1244-1249
Blüm C., Nichtl A., Scheibel T.
Spider silk capsules as protective reaction containers for enzymes
Adv. Funct. Mater., 24, 763–768
Heim M., Elsner M B., Scheibel T.
Lipid-specific ß-sheet formation in a mussel byssus protein domain
Biomacromolecules, 14, 3238-3245
Keerl D., Scheibel T.
Rheological characterization of silk solutions
Green Materials, 2, 11-23
Neuenfeldt M., Scheibel T.
Silks From Insects – From Natural Diversity to Application
Insect Molecular Biology and Ecology, 376-400
Scheibel T.
Die Natur als Vorbild für bioinspirierte Materialien der Zukunft
TIB, 33-36
Hagenau A., Suhre H M., Scheibel T.
Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels
Progr. Polym. Sci. 39, 1564-1583
Schacht K, Scheibel T
Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
Curr. Opin. Biotechnol. 29, 62-69 doi: 10.1016/j.copbio.2014.02.015
Lang G., Scheibel T.
Multifunktionale Spinnenseide – ein vielversprechender Werkstoff
MaschinenMarkt 26, 36-39
Borkner B C., Elsner B M., Scheibel T.
Coatings and films made of silk proteins
Appl. Mater. Interface. 29, 62-69
Zollfrank C., Scheibel T., Seitz H., Travitzky N.
Bioinspired materials engineering
Ullmann’s Encycl. Ind. Chem.
Humenik M., Scheibel T.
Self-assembly of nucleic acids, silk and hybrid materials thereof
J. Phys. Condens. Matter 26, 503102
Heidebrecht A., Scheibel T.
Spionik – Biotech Spinnenseide und ihre Einsatzgebiete
GIT Bioforum 2, 20-22
Humenik M., Scheibel T.
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
ACS Nano 8, 1342-1349
Zeplin.H P., Maksimovikj C N., Jordan C M., Nickel J., Lang G., Axel H., Römer L., Scheibel T.
Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation
Adv. Funct. Mater. 24, 2658–2666 doi: 10.1002/adfm.201302813
Pinto-S D J R., Lamprecht G., Chen W Q., Heo S., Hardy J G., Priewalder H., Scheibel T., Palma M S., Lubec G.
Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders
J. Prot., 105, 174–185
Suhre M H., Gertz M., Steegborn C., Scheibel T.
Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Nat. Comm., 5, 3392
Suhre MH, Gertz M, Steegborn C,
,Structural and functional features of a collagen-binding matrix protein from the mussel byssus
J. Struct. Biol. 186, 75-85 doi: 10.1016/j.jsb.2014.02.013
Hardy J G., Pfaff A., Egaña-L A., Müller A H., Scheibel T.
Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion
Macromol. Biosci., 14, 936-42
Suhre.H M., Steegborn C., Gertzb M., Scheibel T.
Crystallization and preliminary X-ray diffraction analysis os PTMP1
Acta. Cryst. Sec. 70, 769-772
Humenik M., Magdeburg M., Scheibel T.
Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
J. Struct. Biol., 186, 431-437
Humenik M., Markus D., Scheibel T.
Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Nano Lett.., 14, 3999−4004
Lauterbach Y A., Scheibel T.
Life cycle assessment of spider silk nonwoven meshes in an air filtration device
Green Materials., 3: 15-24
Zeplin H P., Berninger K A., Maksimovikj C N., Gelder V P., Scheibel T., Walles H.
Verbesserung der Biokompatibilität von Silikonimplantaten
Handchir. Mikrochir. Plast. Chir., 46: 336-41
Scheibel T.
Engineering of rec SSP allows defined drug uptake and release
TechConnect Briefs: Biotech, Biomaterials, and Biomedical 1-4
DeSimone E., Schacht K., Jungst T., Groll J., Scheibel T.
Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks
Pure Appl. Chem., 87: 737–749
Doblhofer E, Heidebrecht A, Scheibel T
To spin or not to spin: spider silk fibers and more
Appl. Microbiol. Biotechnol. 99: 9361-9380 doi: 10.1007/s00253-015-6948-8
Jungst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev.. 99: 9361-9380
Scheibel T.
Vom Spinnennetz zur High-Tech-Faser
Naturwiss. Rundschau.. 68: 524-525
Scheibel T.
Die Kräfte von Superhelden – Oder: Was Spiderman besser wissen sollte
Vorlesungsreihe KinderUniversität Bayreuth SS
Doblhofer E., Scheibel T.
Engineering of recombinant spider silk proteins allows defined uptake and release of substances
J. Pharm. Sci, 104: 988-994
Elsner B M., Herold M H., Herrmann M S., Bargel H., Scheibel T.
Enhanced cellular uptake of engineered spider silk particles
Biomater. Sci., 3: 543–551
Schacht K., Jüngst T., Schweinlin M., Ewald A., Groll J., Scheibel T.
Biofabrication of cell-loaded 3D spider silk constructs
Angew, Chem., 54: 2816–2820
Heidebrecht A., Eisoldt L., Johannes D., Schmidt A., Geffers M., Lang G., Scheibel T.
Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
Adv. Mater., 27: 2189–2194
Herrmann M S., Scheibel T.
Enzymatic degradation of films, particles and non-woven meshes
ACS Biomater. Sci. Eng., 1: 247–259
Humenik M., Smith A., Arndt S., Scheibel T.
Ion and seed dependent fibril assembly of a spidroin core domain
J. Struct. Biol. 191: 130–138
Humenik M., Smith A M., Arndt S., Scheibel T.
Data for ion and seed dependent fibril assembly of a spidroin core domain
Data in Brief 4: 571–576
Zahn H., Krasowski A., Scheibel T.
Silk
Ullmann’s Encycl. Ind. Chem.
Scheibel T., Groll J., Boccaccini R A., Zehnder T., Jüngst T., Schacht K.
Zellgewebe aus dem Drucker
Nachrichten aus der Chemie, 64: 13-16
Jüngst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev., 116: 1496–1539
Bargel H., Scheibel T.
Zukunftsfeld Bionik
UBT Spektrum, 1: 54 – 57
Bauer J., Scheibel T.
Die Schwarze Witwe und ihre Künste
UBT Aktuell, 2: 60 – 63
Caplan L D., Scheibel T.
Recombinant Silk Production in Bacteria
Ref. Module in Materials Science and Engineering.8, 803581-802274
Peng L., Jiang S., Seuß M., Fery A., Lang G., Scheibel T., Agarwal S.
Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning
Macromol. Mater. Eng. 301: 48-55
Schaal D., Bauer J., Schweimer K., Scheibel T., Rösch P., Schwarzinger S.
Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster
Biomol. NMR Assign. 10: 199-202
Schacht K., Vogt J., Scheibel T.
Foams made of engineered recombinant spider silk proteins
ACS Biomater. Sci. Eng. 2: 517-525
DeSimone E., Schacht K., Scheibel T.
Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins
Mater. Lett.183: 101-104
Haynl C., Hofmann E., Pawar K., Förster S., Scheibel T.
Microfluidics-produced collagen fibers show extraordinary mechanical properties
Nano Lett.16: 5917 – 5922
Borkner B C., Wohlrab S., Lang G., Scheibel T.
Surface modification of polymeric biomaterials using recombinant spider silk proteins
ASC Biomat. Sci.Eng.3, 767 – 775
Schierling B M., Doblhofer E., Scheibel T.
Cellular uptake of drug loaded spider silk particles
Biomater. Sci. 4: 1515-1523
Helfricht N., Doblhofer E., Duval L F J., Scheibel T., Papastavrou G.
Colloidal properties of recombinant spider silk protein particles
J. Phys. Chem. C.120, 18015 – 18027
Doblhofer E., Schmid J., Rieß M., Daab M., Suntinger M., Habel C., Bargel H., Hugenschmidt C., Rosenfeldt S., Breu J., Scheibel T.
Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties
Appl. Mater. Interfaces.8, 25535 – 25543
Bauer J., Schaal D., Eisold L., Schweimer K., Schwarzinger S., Scheibel T.
Acidic residues control the dimerization of the N-terminal domain of Black Widow spiders’ Major Ampullate Spidroin 1
Sci. Rep. 6, 34442
Helfricht N., Doblhofer E., Bieber V., Lommes P., Sieber V., Scheibel T., Papastavrou G.
Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement
Soft Matter. 13: 578 – 589
Lang G., Neugirg R B., Kluge D., Fery A., Scheibel T.
Mechanical testing of engineered spider silk filaments
ACS Appl. Mater. Interfaces, 9: 892 – 900
Bauer J., Scheibel T.
Conformational stability and interplay of N- and C-terminal domains
Biomacromolecules, 18, 835 – 845
Thamm C., Scheibel T.
Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)
Biomacromolecules, 18: 1365 – 1372
Neuenfeldt M., Scheibel T.
Sequence identification, recombinant production, and analysis of the self-assembly of egg stalk silk proteins from lacewing Chrysoperla carnea
Biomolecules, 7: 43
Bauer J., Scheibel T.
Dimerization of the conserved N-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain
Biomacromolecules, 18: 2521 – 2528
Thamm C., DeSimone E., Scheibel T.
Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing
Macromol. Biosci., 11: 1700141
Golser A. V., Scheibel T.
Biotechnological production of the mussel byssus derived collagen preColD
RSC Adv. 7: 38273 – 38278
Petzold J., Touska F., Zimmermann K., Scheibel T., Engel B F.
Surface features of recombinant spider silk protein eADF4(κ16)-made materials are well-suited for cardiac tissue engineering
Adv. Funct. Mater., 27: 1701427
Scheibel T.
Applicability of biotechnologically produced insect silks
Zeitschrift für Naturforschung,72, 365-385
Jokisch S., Neuenfeldt M., Scheibel T
Silk-based fine dust filters for air filtration
Adv. Sustainable Syst., 1: 1700079 doi:10.1002/adsu.201700079
Anton A. M., Heidebrecht A., Mahmood N., Beiner M., Scheibel T., Kremer F.
Foundation of the outstanding toughness in biomimetic and natural spider silk
Biomacromolecules, 8: 3954 – 3962
DeSimone E., Schacht K., Alexandra P., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication 9, 4, 044104
Wicklein V. J., Singer B. B., Scheibel T., Salehi S.
Nanoengineered biomaterials for corneal regeneration
In: Nanoengineered Biomaterials for Regenerative Medicine. Micro- and Nano Technologies, Elsevier: 379-415
Jokisch S., Bargel H., Scheibel T.
Einsatz von Biomaterialien in Filtersystemen
In: Prototype Nature
Bargel H., Scheibel T.
Bio-inspirierte Materialien
MNU Journal, 1: 4-10
Bargel H., Scheibel T.
Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge
MNU Journal, 1: 37 – 44
Humenik M., Lang G., Scheibel T.
Silk nanofibril self-assembly versus electrospinning
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10: e1509
Haug M., Reischl B., Prölß G., Pollmann C., Buckert T., Keidel C., Schürmann S., Hock M., Rupitsch S., Heckel M., Pöschel T., Haynl C., Kiriaev L., Head S. L., Friedrich O., Scheibel T.
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials
Biosens. Bioelectron., 102: 589 – 599
Mickoleit F., Borkner C. B., Toro-Nahuelpan M., Herold, H. M., Maier D. S., Plitzko J. M., Schüler D., Scheibel T.
In-vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides
Biomacromolecules, 19: 962 – 972
Salehi S., Scheibel T.
Biomimetic spider silk fibres: from vision to reality
The Biochemist, 40: 4 – 7
Aigner T. B., DeSimone E., Scheibel T.
Biomedical Applications of Recombinant Silk-Based Materials
Adv. Mater., 30: 1704636
Lintz E. S., Neinhuis C., Scheibel T.
Altering silk film surface properties through Lotus-like mechanisms
Macromol. Mater. Eng., 303: 1700637
Golser A. V., Scheibel T.
Routes towards novel collagen-like biomaterials
Fibers, 6: 21
Kumari S., Bargel H., Anby M. U., Lafargue D., Scheibel T.
Recombinant spider silk hydrogels for sustained release of biologicals
ACS Biomater., 4: 1750 – 1759
Lucke M., Mottas I., Herbst T., Hotz C., Römer L., Schierling M., Slotta U., Spinetti T., Scheibel T., Winter G. T., Bourquin C., Engert J.
Engineered spider silk hybrid particles as delivery system for peptide vaccines
Biomaterials, 172, 105 – 115
Golser A. V., Röber M., Börner H. G., Scheibel T.
Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces
ACS Biomater. Sci. Eng., 4: 2106 – 2114
Hofmann E., Krüger K., Haynl C., Scheibel T., Trebbind M., Förster S.
Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter contro
LabChip,18, 2225-2234
Scheibel T.
Recombinant production of mussel byssus inspired proteins
Biotechnol. J., 13: 1800146
Molina A., Humenik M, Scheibel T.
Nanoscale patterning of surfaces via DNA directed spider silk assembly
Biomacromol., 20, 347-352
Zha H. R., Delparastan P., Fink D. T., Bauer J., Messersmith P. B., Scheibel T.
Universal nanothin silk coatings via controlled spidroin self-assembly
Biomater. Sci., 2019, 7, 683-69
Röber M., Laroque S., Scheibel T., Börner H.-G.
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides
Euro. Polym. J., 112, 301 – 305
Herold H. M., Aigner T. B., Grill C., Krüger S., Taubert A., Scheibel T.
Spider-MAEN recombinant spider silk based hybrid materials
Bioinspired, Biomimetic Nanobiomater., 8, 99-108
Suhre H M., Scheibel T.
A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant_supplement
Europolymj. 113, 305 – 331
Humenik M., Mohrand M., Scheibel T.
Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.
Bioconjugate Chem., 29: 898 – 904.
Scheibel T
Herstellung und Anwendung von Spinnenseide
Bionik. Patente aus der Natur 3. Bionik Konferenz. 130-139
Smith M A., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter 6, 4168–4174
Lang G., Herold H., Scheibel T.
Properties of engineered and fabricated silks
Fibrous Proteins. Structures and Mechanisms. Subcell. Biochem., 82: 527-573
DeSimone E., Pellert A., Schacht K., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication, 9: 044104
Wang J., Scheibel T.
Coacervation of the recombinant Mytilus galloprovincialis foot protein-3b
Biomacromolecules, 19: 3612 – 3619
Roshanbinfar K., Vogt L., Greber B., Diecke S., Boccaccini A. R., Scheibel T., Engel F. B.
Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues
Adv. Funct. Mat., 28: 1803951
Hardy J. G., Bertin A., Torres‐Rendon J. G., Leal‐Egaña A., Humenik M., Bauer, F., Walther A., Cölfen H., Schlaad H., Scheibel T.
Facile photochemical modification of silk protein-based biomaterials
Macromol. Biosci., 28: 1800216