Prof. Dr. Scheibel, Thomas
Open ResumeProteinassemblierung/Verarbeitung
Die Forschungsgruppe „Protein Assembly and Processing“ beschäftigt sich mit der Erforschung und Entwicklung verschiedener Verarbeitungsmethoden von Proteinmaterialien und deren Anwendungen. Unterschiedliche Proteine, darunter rekombinante Spinnenseide, werden zu Filmen, Schäumen, Hydrogelen, (Nano-)Fibrillen, Beschichtungen und Hybridmaterialien verarbeitet. Die daraus resultierende Wirkung und mögliche Anwendungen werden im Hinblick auf bakterielle Abstoßung, bakteriostatische Eigenschaften, zellspezifische Interaktion und mechanische Eigenschaften analysiert.
Research Projects
Heinritz, Christina (M. Sc.)
christina1.heinritz(.at.)uni-bayreuth.de
0921 55-6708
Synthetische Klebstoffe verbinden Gegenstände miteinander. In der Natur vorkommende adhäsive Systeme dagegen sind multifunktional und werden für verschiede Vorgänge wie z.B. zum Schutz, zur Selbstverteidigung und Fortpflanzung, sowie zum Jagen und Fangen von Beute verwendet. Bei natürlichen „Klebern“ handelt es sich oftmals um Proteine, die typische Aminosäuren oder Motive in Verbindung mit post-translationalen Modifikationen enthalten. Ein gut untersuchtes Beispiel im Bereich der Unterwasser-Adhäsive sind die Muschelfußproteine (mfp) der Miesmuschel (Mytilus edulis), die sich auf unterschiedlichen Oberflächen im Meer verankern können. Es ist bekannt, dass hohe Lysin- und DOPA- (3, 4-Dihydroxyphenylalanin) Konzentrationen die entscheidenden Faktoren für die Klebeverbindungen sind. Darüber hinaus nutzen andere Lebewesen Serin- und Threonin-reiche Motive, welche zum Teil durch Phosphorylierungen oder Glycosylierungen modifiziert sind.
Einige protein-basierte Klebesysteme sollen genauer charakterisiert werden. Das Verständnis der Adhäsionsmechanismen erlaubt dann deren Nachahmung und die Entwicklung anwendungsspezifischer rekombinant hergestellter Klebeproteine.
Mohotti, Supun
supun.mohotti(.at.)uni-bayreuth.de
0921 55-6718
Hybridmaterialien auf Proteinbasis
Protein-Polymer-Hybridmaterialien sind aufgrund ihrer einstellbaren Eigenschaften für viele Anwendungen interessant. Polymere können so gestaltet werden, dass sie verschiedene Architekturen, Kettenlängen, Verzweigungen, Seitenkettenfunktionalitäten und Reizempfindlichkeiten aufweisen. Infolgedessen ermöglichen Protein-Polymer-Hybride die Herstellung von Hybridmaterialien, mit denen gängige physikalische Beschränkungen (Temperatur, pH-Wert und Abbau) überwunden werden können, während die Zielspezifität und Bioaktivität der Proteine erhalten bleibt. Durch kovalente Kopplung thiolhaltiger Protein-Domänen an bifunktionelle Prä-Polymere sollen trigger-empfindliche Polymersysteme erzeugt werden. Sobald solche Protein-Polymer-Konjugate etabliert sind, könnten sie für kontrollierte Assemblierungs- Dissemblieungszyklen von Hydrogelen unter pH- und Salzkontrolle verwendet werden, was Anwendungen z.B. in Wirkstoff-Transportsysteme und in der Biofabrikation ermöglicht.
P2: Methacrylierung von Spinnenseide zur Herstellung von photo-empfindlichen Biotinten
Um chemische Vernetzungen und stimuli-responsive Materialien mit einstellbaren Eigenschaften zu erhalten, ist eine chemische Modifizierung rekombinanter Spinnenseide erforderlich. Die Methacrylierung ist eine vielversprechende Methode, um die oben genannten Eigenschaften zu erreichen, da sie der Spinnenseide eine Methacrylfunktionalität verleiht. Der Schwerpunkt liegt auf der Einführung von UV-Vernetzungstrigger in Spinnenseide und der anschließenden Entwicklung neuer vernetzter polymerer Materialien.
Publications
Bargel H., Scheibel T.
A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
AT-Automatisierungstechnik, 2024, 72, 657-665.
Troßmann, V. & Scheibel, T.
Spider silk and blend biomaterials: recent advances and future opportunities
Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine. Woodhead Publishing Series in Biomaterials 2024, Pages 133-190
Charlotte Hopfe, Bryan Ospina-Jara, Thilo Schulze, Marta Tischer, Diego Morales, Vivien Reinhartz, Rashin Esghi Esfahani, Carlos Valderrama, José-Pérez-Rigueiro, Christoph Bleidorn, Heike Feldhaar, Jimmy Cabra-Garcia & Thomas Scheibel
Impact of environmental factors on spider silk properties
Lang, G., Grill, C. & Scheibel, T.
Site-specific functionalization of recombinant spider silk Janus fibers
Shakir Zainuddin & Thomas Scheibel
Continuous yarn electrospinning
Matthias Völkl, Valérie Jérome, Alfons Weig, Julia Jasinski, Nora Meides, Peter Strohriegl, Thomas Scheibel & Ruth Freitag
Pristine and artificially-aged polystyrene microplastic particles differ in regard to cellular response
Sawan Shetty, Selvakumar Murugesan, Sahar Salehi, Alexandra Pellert, Melanie Scheibel, Thomas Scheibel & Srinivasan Anandhan
Evaluation of piezoelectric behavior and biocompatibility of poly(vinylidene fluoride) ultrafine fibers with incorporated talc nanosheets
Nicholas J. Chan, Sarah Lentz, Paul A. Gurr, Thomas Scheibel & Greg G. Qiao
Mimicry of silk utilizing synthetic polypeptides
Sarah Lentz, Vanessa T. Troßmann, Christian B. Borkner, Vivien Beyersdorfer, Mrkus Rottmar & Thomas Scheibel
Structure−Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications
Vanessa T. Troßmann, Stefanie Heltmann-Meyer, Hanna Amouei, Harald Wajantm, Raymund E. Horch, Dominik Steiner & Thomas Scheibel
Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells
Hendrik Bargel, Vanessa Troßmann, Christoph Sommer & Thomas Scheibel
Bioselectivity of silk protein-based materials and their bio-inspired applications
Vanessa J. Neubauer, Florian Hüter, Johannes Wittmann, Vanessa T. Troßmann, Claudia Kleinschrodt, Bettina Alber-Laukant, Frank Rieg & Thomas Scheibel
Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels
Julia Jasinski, Magdalena V. Wilde, Matthias Voelkl, Valérie Jerôme, Thomas Fröhlich, Ruth Freitag und Thomas Scheibel
Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell Uptake
Sarah Lentz, Vanessa T. Troßmann & Thomas Scheibel
Selective Topography Directed Cell Adhesion on Spider Silk Surfaces
Mirjam Hofmaier, Mikhail Malanin, Eva Bittrich, Sarah Lentz, Birgit Urban, Thomas Scheibel, Andreas Fery & Martin Müller
β‑Sheet structure formation within binary blends of two spider silk related peptides
Vanessa T. Trossmann & Thomas Scheibel
Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding
Martin Reimer, Kai Mayer, Daniel Van Opdenbosch, Thomas Scheibel, & Cordt Zollfrank
Biocompatible Optical Fibers Made of Regenerated Cellulose and Recombinant Cellulose-Binding Spider Silk
Lamberger, Z., Zainuddin, S., Scheibel, T. & Lang, G.
Polymeric Janus Fibers
Saric, M. & Scheibel, T.
Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers
D. Stengel, M. Saric, H. R. Johnson, T. Schiller, J. Diehl, K. Chalek, D. Onofrei, T. Scheibel, G. H. Holland
Tyrosine’s Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers
Herold H.M., Döbl A., Wohlrab S., Humenik M., Scheibel T.
Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release
Biomacromolecules 21, 4904-4912
Schwarzer, M. Brehm, J., Vollmer, M., Jasinski, J., Xu, C., Bin Zainiddin, S., Frazöhlilch, T., Schott, M., Greiner, A., Scheibel, T. &Laforsch, C.
Shape, size, and polymer dependent effects of microplastics on Daphnia magna
Hazardous Materials, 436, 2022
Chan, N., Lentz, S., Gurr, P., Tan, S., Scheibel, T. & Qiao G.
Vernetzte Polypeptide durch RAFT-vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen
Angewandte Chemie, 2021
Riedl, S., Völkl, M., Holzinger, A., Jasinski, J., Jerome, V., Scheibel, T., Feldhaar, H. & Freitag, R.
In vitro cultivation of primary intestinal cells from Eisenia fetida as basis for ecotoxicological studies
Ecotoxicology, 2021
Koeck, K. S., Salehi, S., Humenik, M. & Scheibel, T.
Processing of Continuous Non-Crosslinked Collagen Fibers for Microtissue Formation at the Muscle-Tendon Interface
Advanced functional Materials, 2021
Ramsperger, A., Jasinski, J., Völkl, M., Witzmann, T., Meinhart, M., Jerome, V., Kretschmer, W., Freitag, R., Senker, J., Fery A., Kress, H., Scheibel, T. & Laforsch, Ch.
Vermeintlich identische Mikroplastikpartikel unterscheiden sich wesentlich in ihren Materialeigenschaften, die Partikel-Zell-Interaktionen und zelluläre Reaktionen beeinflussen.
Hazardous Materials, Jahrgang 425, 05.03.2022
Lechner, A., Trossmann, V. & Scheibel, T.
Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability
Macromol. Biosci. 2021, 2100390
Laomeephol, Ch., Vasuratna, A., Ratanavaraporn, J., Kanokpanont, S., Luckanagul, J., Humenik, M. Scheibel, Th. & Damrongsakkul, S.
Auswirkungen von blended Bombyx mori Silk Fibroin und rekombinanten Spider Silk Fibroin Hydrogels auf das Zellwachstum
Polymers 2021, 13, 4182
Sonnleitner, D., Sommer, Ch., Scheibel, T. & Lang, G.
Ansätze zur Hemmung der Biofilmbildung unter Verwendung natürlicher und künstlicher Seidenmaterialien
Matereials Science & Engineering, Jahrgang 131, Dezember 2021
Jasinski, J., Völkl, M., Jérome, V., Scheibel, T. & Freitag, R.
Noxic effects of polystyrene microparticles on murine macrophages and epithelial cells
Scientific Reports 11, online 03.08.2021
Steiner, D., Winkler, S., Heltmann-Meyer, S., Troßmann, V., Fey, T., Scheibel, T., Horch, R. & Arkudas, A.
Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model
Biofabrication, Vol. 14, Number 4
Murugesan, S. & Scheibel, T.
Chitosan-based nanocomposites for medical applications
Journal of Polymer Science, online June 2021
Esser, T. U., Trossmann, V. T., Lentz, S., Engel, F. B. & Scheibel, T.
Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering
Straßburg, St., Bin Zainuddin, S. & Scheibel, Th.
The Power of Silk Technology for Energy Applications
Adv. Energy Mat., online May 2021
Sommer, Ch., Bargel, H., Raßmann, N. & Scheibel, Th.
Microbial repellence properties of engineered spider silk coatings prevent biofilm formation of opportunistic bacterial strains
MRS Communications, Online April 2021
Röber, M., Scheibel, Th. & Börner, H. G.
Toward Activatable Collagen Mimics: Combining DEPSI “Switch” Defects and Template-Guided Self-Organization to Control Collagen Mimetic Peptides
Macromol Biosci, online May 2021
Röber, M., Scheibel, Th. & Börner, H. G.
Toward Activatable Collagen Mimics: Combining DEPSI “Switch” Defects and Template-Guided Self-Organization to Control Collagen Mimetic Peptides
Macromol Biosci, online May 2021
Sommer, Ch., Bargel, H., Raßmann, N. & Scheibel, Th.
Microbial repellence properties of engineered spider silk coatings prevent biofilm formation of opportunistic bacterial strains
Neubauer, V., Kellner, Ch., Gruen, V., Schenk, A. & Scheibel, T.
Recombinant major ampullate spidroin-particles as biotemplates for manganese carbonate mineralization
Multifunct. Materials, 2021, 4 014002
Neubauer, V., Döbl, A. & Scheibel, T.
Silk-based materials for hard tissue engineering
Materials, 2021, 14 (3), 674
Strassburg, St., Mayer, K. & Scheibel, T.
Functionalization of biopolymer fibers with magnetic nanoparticles
Physical Sciences, online Jan. 21
Saric, M., Eisoldt, L., Döring, V. & Scheibel, T.
Interplay of different Major Ampullate spidroins during assembly and implications for fiber mechanics
Advanced Materials, online Jan. 2021
Hofmaier, M., Urban, B., Lentz, S., Borkner, C., Scheibel, T., Fery, A. & Müller, M.
Dichroic Fourier Transform Infrared Spectroscopy characterization of the β-sheet orientation in spider silk films on silicon substrates
Journal of Physical Chemystry, online Jan. 2021
Humenik, M., Winkler, A. & Scheibel, T.
Patterning of protein-based materials
Biopolymers, 2020; online Dec. 2020
Bargel, H., Hopfe, Ch. & Scheibel, T.
Proteinfasern als Hochleistungsmaterial
Biologie in unserer Zeit, 2020, Vol. 50 (6), 434 – 443
Müller, F., Bin Zainuddin, M. S. & Scheibel, T.
Roll-to-Roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications
Molecules 2020, 25(23), 5540
Hopfe, Ch., Ospina-Jara, B., Scheibel, Th. & Cabra-Garcı´, J.
Ocrepeira klamt sp. n. (Araneae: Araneidae), a novel spider species from an Andean páramo in Colombia
PLOS One
Neubauer, V. & Scheibel, T.
Spider silk fusion proteins for controlled collagen binding and biomineralization
ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N. und Scheibel, T.
Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials
Data in Brief, Vol. 32, Okt.2020
Haynl, C., Vongsvivut, J., Mayer, K., Bargel, H., Neubauer, V., Tobin, M., Elgar, M. & Scheibel, T.
Free‑standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro‑ and submicron fiber
Sci Rep, 10, 17624 (2020)
Müller, F., Jokisch, S., Bargel, H. & Scheibel, T.
Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers
ASC Applied Polymer Materials, 2020 2 (11), 4360-4367
Mathilde Lefevre, Patrick Flammang , A. Sesilja Aranko , Markus B. Linder , Thomas Scheibel , Martin Humenik , Maxime Leclercq , Mathieu Surin , Lionel Tafforeau, Ruddy Wattiez, Philippe Leclère, Elise Hennebert
Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings
Scheibel T., Bell S., Walke S.
S. cerevisiae and sulfur – a unique way to deal with the environment
FASEB J. 11, 917-921
Scheibel T., Buchner J.
Hsp90 proteins – The Hsp90 Family
Guideb. Mol. Chaperones Protein-Folding Catal. 151.
Nichtl A., Buchner J., Jaenicke R., Rudolph R., Scheibel T.
Folding and association of β-galactosidase
J. Mol.Biol. 282, 5, 1083-1091
Thomas Scheibel
Spider silk-based biomaterials: a new opportunity for product development in many industries
Weiss A. C. G., Herold H. M., Lentz S., Faria M., Besford Q. A., Ang C.-S., Caruso F., Scheibel T.
Surface modification of spider silk particles to direct biomolecular corona formation
Kramer J. P. M., Aigner T. B., Petzold J., Roshanbinfar K., Scheibel T., Engel F. B.
Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering
Jokisch, S., Bargel, H., Scheibel, T.
Einsatz von Biomaterialien in Filtersystemen – BioFis
In: Bernotat, A. & Berling, J., Prototype Nature
Mertgen A.-S., Trossmann V., Guex A., Maniura-Weber K., Scheibel T., Rottmar M.
Multifunctional biomaterials – Combining material modification strategies for engineering
ACS Appl. Mater. Interface, online first, 0c01893
Murugesan S., Scheibel T.
Copolymer clay nanocomposites for biomedical applications
Adv. Funct. Mater., online first, 1908101
Humenik M., Preiß T., Goedrich S., Papastavrou G., Scheibel T.
Functionalized DNA spider silk nanohydrogels for controlled protein binding and release
Materials Today Bio, 6, 100045
Aigner T. B., Haynl C., Salehi S., O'Connor A., Scheibel T.
Nerve guidance conduit design based on self-rolling tubes
Materials Today Bio, 5, 100042
Salehi S., Koeck K., Scheibel T.
Spider silk for tissue engineering applications
Molecules, 25, 737-757
Fratzl P., Jacobs K., Möller M., Scheibel T., Sternberg K.
Materialforschung – Impulsgeber Natur
acatech Diskussion, 2020
Bruns N., Scheibel T.
Biomimetic Polymers – Editorial
Europ. Polym. J., 122, 109370
Humenik M., Pawar K., Scheibel T.
Nanostructured, self-assembled spider silk materials for biomedical applications
In: S. Perrett et al. (eds.), Biological and Bio-inspired Nanomaterials, (Advances in Experimental Medicine and Biology 1174), 187-221
Borkner C. B., Lentz S., Müller M., Fery A., Scheibel T.
Ultra-thin spider silk films: Insights into spider silk assembly on surfaces
ACS Appl. Polym. Mater., 1, 3366-3374
Kumari S., Bargel H., Scheibel T.
Recombinant spider silk silica hybrid scaffolds with drug releasing properties
Macromol. Rapid Commun., 41, 1900426
Pawar K., Welzel G., Haynl C., Schuster S., Scheibel T.
Recombinant spider silk and collagen-based nerve guidance conduits
ACS Appl. Bio Mater., 2, 4872−4880
DeSimone E., Aigner T. B., Humenik M., Lang G., Scheibel T.
Aqueous electrospinning of recombinant spider silk proteins
Mater. Sci. Eng. C, 106, 110145
Saric M., Scheibel T.
Engineering of silk proteins for materials applications
Curr. Opin. Biotechnol., 60, 213–220
Steiner D., Lang G., Fischer L., Winkler S., Fey T., Greil P., Scheibel T., Horch R. E., Arkudas A.
Intrinsic vascularisation of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model
Tissue Eng. Part A, 25, 21-22
Aigner T. B., Scheibel T.
Self-rolling refillable tubular enyme containers
ACS Appl. Mater. Interfaces 2019, 11, 15290-15297
Wang J., Suhre M. H., Scheibel, T.
A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity
Europ. Polym. J., 113, 305–312
Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J.
Assessment of the ATP binding properties of Hsp90
J. Biol. Chem. 271, 10035–10041
Scheibel T., Neuhofen S., Weikl T., Mayr C., Reinstein J., Vogel P. D., Buchner J.
ATP binding properties of human Hsp90
J. Biol. Chem. 272, 18608-18613
Scheibel T., Siegmund H. I., Jaenicke R., Ganz P., Lilie H., Buchner J.
The charged region of Hsp90 modulates the function of the N-terminal domain
Proc. Natl. Acad. Sci. U S A. 4, 1297-302
Scheibel T., Buchner J.
The Hsp90 complex – a super-chaperone machine as a novel drug target
Biochem. Pharmacol. 6, 675-682.
Scheibel T., Weikl T., Buchner J.
Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence
Proc. Natl. Acad. Sci. U S A. 4, 1495- 1499.
Hardy J. G., Bertin A., Torres‐Rendon J. G., Leal‐Egaña A., Humenik M., Bauer, F., Walther A., Cölfen H., Schlaad H., Scheibel T.
Facile photochemical modification of silk protein-based biomaterials
Macromol. Biosci., 28: 1800216
Roshanbinfar K., Vogt L., Greber B., Diecke S., Boccaccini A. R., Scheibel T., Engel F. B.
Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues
Adv. Funct. Mater., 28: 1803951
Wang J., Scheibel T.
Coacervation of the recombinant Mytilus galloprovincialis foot protein-3b
Biomacromolecules, 19: 3612 – 3619
DeSimone E., Pellert A., Schacht K., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication, 9: 044104
Lang G., Herold H., Scheibel T.
Properties of engineered and fabricated silks
Fibrous Proteins. Structures and Mechanisms. Subcell. Biochem., 82: 527-573
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter 6, 4168–4174
Smith M A., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Scheibel T.
Herstellung und Anwendung von Spinnenseide
Bionik. Patente aus der Natur 3. Bionik Konferenz. 130-139
Humenik M., Mohrand M., Scheibel T.
Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.
Bioconjugate Chem., 29: 898 – 904.
Herold H. M., Aigner T. B., Grill C., Krüger S., Taubert A., Scheibel T.
Spider-MAEN recombinant spider silk based hybrid materials
Bioinspired, Biomimetic Nanobiomater., 8, 99-108
Röber M., Laroque S., Scheibel T., Börner H.-G.
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides
Euro. Polym. J., 112, 301 – 305
Zha H. R., Delparastan P., Fink D. T., Bauer J., Messersmith P. B., Scheibel T.
Universal nanothin silk coatings via controlled spidroin self-assembly
Biomater. Sci., 2019, 7, 683-695
Molina A., Humenik M., Scheibel T.
Nanoscale patterning of surfaces via DNA directed spider silk assembly
Biomacromol., 20, 347-352
Scheibel T.
Recombinant production of mussel byssus inspired proteins
Biotechnol. J., 13: 1800146
Hofmann E., Krüger K., Haynl C., Scheibel T., Trebbind M., Förster S.
Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control
LabChip,18, 2225-2234
Golser A. V., Röber M., Börner H. G., Scheibel T.
Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces
ACS Biomater. Sci. Eng., 4: 2106 – 2114
Lucke M., Mottas I., Herbst T., Hotz C., Römer L., Schierling M., Slotta U., Spinetti T., Scheibel T., Winter G. T., Bourquin C., Engert J.
Engineered spider silk hybrid particles as delivery system for peptide vaccines
Biomaterials, 172, 105 – 115
Kumari S., Bargel H., Anby M. U., Lafargue D., Scheibel T.
Recombinant spider silk hydrogels for sustained release of biologicals
ACS Biomat., 4: 1750 – 1759
Golser A. V., Scheibel T.
Routes towards novel collagen-like biomaterials
Fibers, 6: 21
Lintz E. S., Neinhuis C., Scheibel T.
Altering silk film surface properties through Lotus-like mechanisms
Macromol. Mater. Eng., 303: 1700637
Aigner T. B., DeSimone E., Scheibel T.
Biomedical applications of recombinant silk-based materials
Adv. Mater., 30: 1704636
Salehi S., Scheibel T.
Biomimetic spider silk fibres: from vision to reality
The Biochemist, 40: 4 – 7
Mickoleit F., Borkner C. B., Toro-Nahuelpan M., Herold, H. M., Maier D. S., Plitzko J. M., Schüler D., Scheibel T.
In-vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides
Biomacromolecules, 19: 962 – 972
Haug M., Reischl B., Prölß G., Pollmann C., Buckert T., Keidel C., Schürmann S., Hock M., Rupitsch S., Heckel M., Pöschel T., Haynl C., Kiriaev L., Head S. L., Friedrich O., Scheibel T.
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials
Biosens. Bioelectron., 102: 589 – 599
Humenik M., Lang G., Scheibel T.
Silk nanofibril self-assembly versus electrospinning
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10: e1509
Bargel H., Scheibel T.
Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge
MNU Journal, 1: 37 – 44
Bargel H., Scheibel T.
Bio-inspirierte Materialien
MNU Journal, 1: 4-10
Jokisch S., Bargel H., Scheibel T.
Einsatz von Biomaterialien in Filtersystemen
In: Prototype Nature
Wicklein V. J., Singer B. B., Scheibel T., Salehi S.
Nanoengineered biomaterials for corneal regeneration
In: Nanoengineered Biomaterials for Regenerative Medicine. Micro- and Nano Technologies, Elsevier: 379-415
DeSimone E., Schacht K., Alexandra P., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication 9, 4, 044104
Anton A. M., Heidebrecht A., Mahmood N., Beiner M., Scheibel T., Kremer F.
Foundation of the outstanding toughness in biomimetic and natural spider silk
Biomacromolecules, 8: 3954 – 3962
Jokisch S., Neuenfeldt M., Scheibel T.
Silk-based fine dust filters for air filtration
Adv. Sustainable Syst., 1: 1700079 doi:10.1002/adsu.201700079
Scheibel T.
Applicability of biotechnologically produced insect silks
Zeitschrift für Naturforschung, 72 , 365-385
Petzold J., Touska F., Zimmermann K., Scheibel T., Engel B F.
Surface features of recombinant spider silk protein eADF4(κ16)-made materials are well-suited for cardiac tissue engineering
Adv. Funct. Mater., 27: 1701427
Golser A. V., Scheibel T.
Biotechnological production of the mussel byssus derived collagen preColD
RSC Adv., 7: 38273 – 38278
Thamm C., DeSimone E., Scheibel T.
Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing
Macromol. Biosci., 11: 1700141
Bauer J., Scheibel T.
Dimerization of the conserved N-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain
Biomacromolecules, 18: 2521 – 2528
Neuenfeldt M., Scheibel T.
Sequence identification, recombinant production, and analysis of the self-assembly of egg stalk silk proteins from lacewing Chrysoperla carnea
Biomolecules, 7: 43
Thamm C., Scheibel T.
Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)
Biomacromolecules, 18: 1365 – 1372
Bauer J., Scheibel T.
Conformational stability and interplay of N- and C-terminal domains
Biomacromolecules 2017, 18, 835 – 845
Lang G., Neugirg R B., Kluge D., Fery A., Scheibel T.
Mechanical testing of engineered spider silk filaments
ACS Appl. Mater. Interfaces,9: 892 – 900
Helfricht N., Doblhofer E., Bieber V., Lommes P., Sieber V., Scheibel T., Papastavrou G.
Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement
Soft Matter. 13: 578 – 589
Bauer J., Schaal D., Eisold L., Schweimer K., Schwarzinger S., Scheibel T.
Acidic residues control the dimerization of the N-terminal domain of Black Widow spiders’ Major Ampullate Spidroin 1
Sci. Rep. 6, 34442
Doblhofer E., Schmid J., Rieß M., Daab M., Suntinger M., Habel C., Bargel H., Hugenschmidt C., Rosenfeldt S., Breu J., Scheibel T.
Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties
Appl. Mater. Interfaces. 8, 25535 – 25543
Helfricht N., Doblhofer E., Duval L F J., Scheibel T., Papastavrou G.
Colloidal properties of recombinant spider silk protein particles
J. Phys. Chem. C. 120, 18015 – 18027
Schierling B M., Doblhofer E., Scheibel T.
Cellular uptake of drug loaded spider silk particles
Biomater. Sci. 4: 1515-1523
Borkner B C., Wohlrab S., Lang G., Scheibel T.
Surface modification of polymeric biomaterials using recombinant spider silk proteins
ASC Biomat. Sci.Eng. 3, 767 – 775
Haynl C., Hofmann E., Pawar K., Förster S., Scheibel T.
Microfluidics-produced collagen fibers show extraordinary mechanical properties
Nano Lett.16: 5917 – 5922
DeSimone E., Schacht K., Scheibel T.
Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins
Mater. Lett., 183: 101-104
Schacht K., Vogt J., Scheibel T.
Foams made of engineered recombinant spider silk proteins
ACS Biomater. Sci. Eng. 2: 517-525
Schaal D., Bauer J., Schweimer K., Scheibel T., Rösch P., Schwarzinger S.
Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster
Biomol. NMR Assign. 10: 199-202
Peng L., Jiang S., Seuß M., Fery A., Lang G., Scheibel T., Agarwal S.
Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning
Macromol. Mater. Eng. 301: 48-55
Caplan L D., Scheibel T.
Recombinant Silk Production in Bacteria
Ref. Module in Materials Science and Engineering.8, 803581-802274
Bauer J., Scheibel T.
Die Schwarze Witwe und ihre Künste
UBT Aktuell, 2: 60 – 63
Bargel H., Scheibel T.
Zukunftsfeld Bionik
UBT Spektrum, 1: 54 – 57
Jüngst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev., 116: 1496-1539
Scheibel T., Groll J., Boccaccini R A., Zehnder T., Jüngst T., Schacht K.
Zellgewebe aus dem Drucker
Nachrichten aus der Chemie, 64: 13-16
Zahn H., Krasowski A., Scheibel T.
Silk
Ullmann’s Encycl. Ind. Chem.
Humenik M., Smith A M., Arndt S., Scheibel T.
Data for ion and seed dependent fibril assembly of a spidroin core domain
Data in Brief, 4: 571–576
Humenik M., Smith A., Arndt S., Scheibel T.
Ion and seed dependent fibril assembly of a spidroin core domain
J. Struct. Biol. 191: 130–138
Herrmann M S., Scheibel T.
Enzymatic degradation of films, particles and non-woven meshes
ACS Biomater. Sci. Eng., 1: 247–259
Heidebrecht A., Eisoldt L., Johannes D., Schmidt A., Geffers M., Lang G., Scheibel T.
Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
Adv. Mater., 27: 2189–2194
Schacht K., Jüngst T., Schweinlin M., Ewald A., Groll J., Scheibel T.
Biofabrication of cell-loaded 3D spider silk constructs
Angew, Chem., 54: 2816–2820
Elsner B M., Herold M H., Herrmann M S., Bargel H., Scheibel T.
Enhanced cellular uptake of engineered spider silk particles
Biomater. Sci., 3: 543–551
Doblhofer E., Scheibel T.
Engineering of recombinant spider silk proteins allows defined uptake and release of substances
J. Pharm. Sci, 104: 988-994
Scheibel T.
Die Kräfte von Superhelden – Oder: Was Spiderman besser wissen sollte
Vorlesungsreihe KinderUniversität Bayreuth SS .
Scheibel T.
Vom Spinnennetz zur High-Tech-Faser
Naturwiss. Rundschau.. 68: 524-525
Jungst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev.. 99: 9361-9380
Doblhofer E., Heidebrecht A., Scheibel T.
To spin or not to spin: spider silk fibers and more
Appl. Microbiol. Biotechnol. 99: 9361-9380
DeSimone E., Schacht K., Jungst T., Groll J., Scheibel T.
Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks
Pure Appl. Chem., 87: 737–749
Scheibel T.
Engineering of rec SSP allows defined drug uptake and release
TechConnect Briefs: Biotech, Biomaterials, and Biomedical 1-4
Zeplin H P., Berninger K A., Maksimovikj C N., Gelder V P., Scheibel T., Walles H.
Verbesserung der Biokompatibilität von Silikonimplantaten
Handchir. Mikrochir. Plast. Chir., 46: 336-41
Lauterbach Y A., Scheibel T.
Life cycle assessment of spider silk nonwoven meshes in an air filtration device
Green Materials., 3: 15-24
Humenik M., Markus D., Scheibel T.
Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Nano Lett.., 14, 3999−4004
Humenik M., Magdeburg M., Scheibel T.
Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
J. Struct. Biol., 186, 431-437
Suhre.H M., Steegborn C., Gertzb M., Scheibel T.
Crystallization and preliminary X-ray diffraction analysis os PTMP1
Acta. Cryst. Sec. 70, 769-772
Hardy J G., Pfaff A., Egaña-L A., Müller A H., Scheibel T.
Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion
Macromol. Biosci., 14, 936-42
Suhre M H., Gertz M., Steegborn C., Scheibel T.
Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Nat. Comm., 5, 3392
Pinto-S D J R., Lamprecht G., Chen W Q., Heo S., Hardy J G., Priewalder H., Scheibel T., Palma M S., Lubec G.
Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders
J. Prot., 105, 174–185
Zeplin.H P., Maksimovikj C N., Jordan C M., Nickel J., Lang G., Axel H., Römer L., Scheibel T.
Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation
Adv. Funct. Mater. 24, 2658–2666
Humenik M., Scheibel T.
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
ACS Nano 8, 1342-1349
Heidebrecht A., Scheibel T.
Spionik – Biotech Spinnenseide und ihre Einsatzgebiete
GIT Bioforum 2, 20-22
Humenik M., Scheibel T.
Self-assembly of nucleic acids, silk and hybrid materials thereof
J. Phys. Condens. Matter 26, 503102
Zollfrank C., Scheibel T., Seitz H., Travitzky N.
Bioinspired materials engineering
Ullmann’s Encycl. Ind. Chem.
Borkner B C., Elsner B M., Scheibel T.
Coatings and films made of silk proteins
Appl. Mater. Interface. 29, 62-69
Lang G., Scheibel T.
Multifunktionale Spinnenseide – ein vielversprechender Werkstoff
MaschinenMarkt 26, 36-39
Schacht K., Scheibel T.
Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
Curr. Opin. Biotechnol. 29, 62-69
Hagenau A., Suhre H M., Scheibel T.
Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels
Progr. Polym. Sci. 39, 1564-1583
Scheibel T.
Die Natur als Vorbild für bioinspirierte Materialien der Zukunft
TIB 33-36
Neuenfeldt M., Scheibel T.
Silks From Insects – From Natural Diversity to Application
Insect Molecular Biology and Ecology, 376-400
Keerl D., Scheibel T.
Rheological characterization of silk solutions
Green Materials, 2, 11 –23
Heim M., Elsner M B., Scheibel T.
Lipid-specific ß-sheet formation in a mussel byssus protein domain
Biomacromolecules, 14, 3238-3245
Blüm C., Nichtl A., Scheibel T.
Spider silk capsules as protective reaction containers for enzymes
Adv. Funct. Mater., 24, 763–768
Bauer F., Wohlrab S., Scheibel T.
Controllable cell adhesion, growth and orientation on layered silk protein films
Biomater. Sci., 1, 1244-1249
Helfricht N., Klug M., Mark A., Kuznetsov V., Blüm C., Scheibel T., Papastavrou G.
Surface properties of spider silk particles in solution
Biomater. Sci, 1, 1166-1171
Neubauer P. M., Blüm C., Agostini E., Engert J., Scheibel T., Fery A.
Micromechanical characterization of spider silk particles
Biomater. Sci., 1, 1160-1165
Hardy J. G., Leal-Egaña A., Scheibel T.
Engineered spider silk protein-based composites for drug delivery
Macromol. BioSci., 13, 1431–1437
Claussen K. U., Lintz E. S., Giesa R., Schmidt H. W., Scheibel T.
Protein gradient films of fibroin and gelatine
Macromol. BioSci., 13, 1396–1403
Lang G., Jokisch S., Scheibel T.
Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
J. Vis. Exp., 75, e50492
Hofmann J. P., Denner P., Krammer N. C., Kuhn P. H., Suhre M. H., Scheibel T., Lichtenthaler S. F., Schätzl H. M., Bano D., Vorberg I. M.
Cell-to-cell propagation of infectious cytosolic protein aggregates
Proc. Natl. Acad. Sci. U S A., 110, 5951–5956
Scheibel T.
Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit
Chemie & More, 4, 3-5
Lintz E. S., Scheibel T.
Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers
Adv. Funct. Mater., 23, 4467–4482
Heidebrecht A., Scheibel T.
Recombinant production of spider silk proteins
Adv. Appl. Microbiol. 82, 115-153
Wohlrab S., Thamm C., Scheibel T.
The Power of Recombinant Spider Silk Proteins
In: Biotechnology of Silk (Eds Asakura T., Miller T.), 179-201
Lauterbach A. Y., Scheibel T.
Determining the Environmental Benefit of Artificial Spider Silk Products
NSTI-Nanotech., 3, 108-111
Smith A., Scheibel T.
Hierarchical Protein Assemblies as a Basis for Materials
In: Materials Design Inspired by Nature: Function Through Inner Architecture (Eds. Fratz P., Dunlop J. W. C., Weinkamer R.), 256-281
Bauer F., Bertinetti L., Masic A., Scheibel T.
Dependence of mechanical properties of lacewing egg stalks on relative humidity
Biomacromolecules. 13, 3730-3735
Wohlrab S., Spießa K., Scheibel T.
Varying surface hydrophobicities of coatings made of recombinant spider silk proteins
J. Mater. Chem. 22, 22050-22054
Young L S., Gupta M., Hanske C., Fery A., Scheibel T., Tsukruk V V.
Utilizing conformational changes for patterning thin films of recombinant spider silk proteins
Biomacromol. 13, 10, 3189-3199
Wohlrab S., Müller S., Schmidt A., Neubauer S., Kessler H., Egaña-L A., Scheibel T.
Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
Biomaterials 33, 6650-6659
Egañaa-L A., Scheibel T.
Interactions of cells with silk surfaces
J. Mater. Chem. 22, 14330-14336
Bauer F., Scheibel T.
Artificial egg stalks made of a recombinantly produced lacewing silk protein
Ang. Chemie Intl. Edit. 124, 6627-6630
Keerl D., Scheibel T.
Characterization of natural and biomimetic spider silk fibers
Bioinspired, Biomimetic Nanobiomater.1, 83-94
Egaña-L A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S., Scheibel T.
Interactions of fibroblasts with different morphologies made of an engineered spider silk protein
Adv. Eng. Mater. 14, B67-B75
Bluem C., Scheibel T.
Control of drug loading and release properties of spider silk sub-microparticles
BioNanoSci. 2, 67-74
Claussen K U., Giesa R., Scheibel T., Schmidt H W.
Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads
Macromol. Rapid Commun. 33, 206-211
Claussen K U., Scheibel T., Schmidt H W., Giesa R.
Polymer gradient materials: can nature teach us new tricks?
Macromol. Mater. Eng. 297, 938–957
Eisoldt L., Thamm C., Scheibel T.
The role of terminal domains during storage and assembly of spider silk proteins
Biopolymers. 97, 355-361
Slotta U., Hess S., Spieß K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils: A structural comparison
Macromol. Biosci. 7, 73-90
Spiess K., Ene R., Keenan C D., Senker J., Kremerb F., Scheibel T.
Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films
J. Mater. Chem. 21, 13594-13604
Schacht K., Scheibel T.
Controlled hydrogel formation of a recombinant spider silk protein
Biomacromol. 12, 2488–2495
Hagenaua A., Papadopoulos P., Kremer F., Scheibel T.
Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads
J. Structural Biol. 175, 339-347
Lammel A., Schwab M., Hofer M., Winter G., Scheibel T.
Recombinant spider silk particles as drug delivery vehicles
Biomaterials 32, 2233–2240
Hagn F., Thamm C., Scheibel T., Kessler H.
pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation
Angew. Chem. Int. Ed. 50, 310-313
Humenik M., Smith A., Scheibel T.
Recombinant spider silks – biopolymers with potential for future applications
Polymers 3, 640–661
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol.Biosci. 2011, S32-S41
Eisoldt L., Smith A., Scheibel T.
Decoding the secrets of spider silk
Materials Today. 14, 80–86
Humenik M., Scheibel T., Smith A.
Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber
Prog. Mol. Biol. Transl. Sci. 103, 131-185.
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter.6, 4168–4174
Keerl D., Hardy J G., Scheibel T.
Biomimetic spinning of recombinant silk proteins
Mater. Res. Soc. Symp. Proc.07-20, 1239.
Hagn F., Eisoldt L., Hardy J G., Vendrely C., Coles M., Scheibel T., Kessler H.
A conserved spider silk domain acts as a molecular switch that controls fibre assembly
Nature 365, 239-242
Lammel A S., Hu X., Park S H., Kaplan D L., Scheibel T.
Controlling silk fibroin particle features for drug delivery
Biomaterials. 31, 4583-4591
Hagenau A., Scheibel T.
Towards the recombinant production of mussel byssal collagens
J. Adhesion. 86, 10-24
Eisoldt L., Hardy J G., Heim M., Scheibel T.
The role of salt and shear on the storage and assembly of spider silk proteins.
J. Struct. Biol. 170, 413–419
Heim M., Ackerschott C B., Scheibel T.
Characterization of recombinantly produced spider flagelliform silk domains
J. Struct. Biol. 170, 420–425
Scheibel T.
Spider silk from nature to bio-inspired materials
Chem. Fiber. Int. 3, 15-16
Scheibel T.
Advanced Biomaterials
Macromol. Biosciences. 10, 674
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol. Biosciences. 10, 998-1007
Hardy J G., Scheibel T.
Composite materials based on silk proteins
Progr. Polymer Sci. 35, 1093-1115
Egaña-L A., Scheibel T.
Silk-based materials for biomedical applications
Biotechnol. Appl. Biochem. 55, 155–167
Heim M., Römer L., Scheibel T.
Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins
Chem. Soc. Rev.39, 156–164
Suhre M H., Hess S., Golser A V., Scheibel T.
Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM
J. Inorg. Biochem. 120, 1711-1720
Vézy C., Hermanson.D K., Scheibel T., Bausch A R.
Interfacial rheological properties of recombinant spider-silk proteins
Biointerphases 4, 43-46
Pirzer T., Geisler M., Scheibel T., Hugel T.
Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
Physical Biol. J. 6, 025004
Krammer C., Kryndushkin D., Suhre M H., Kremmer E., Hofmann A., Pfeifer A., Scheibel T., Wickner R B., Schätzl H M., Vorberg I.
The yeast Sup35NM domain propagates as a prion in mammalian cells
Proc. Natl. Acad. Sci. USA 106, 462-467
Hagenau A., Scheidt H A., Serpell L., Huster D., Scheibel T.
Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis
Macromol. Biosciences 9, 162-168
Smith A M., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Hardy J G., Scheibel T.
Silk-inspired polymers and proteins
Biochem. Soc. Trans. 37, 677–681
Hardy J G., Scheibel T.
Production and processing of spider silk proteins
J. Polymer. Sci. Part.A: Polymer. Chem. 47, 3957–3963
Grunwald I., Rischka K., Kast S M., Scheibel T., Bargel H.
Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein
Phil. Trans. Roy. Soc. London: A 367, 1727-1747
Heim M., Römer L., Scheibel T.,
Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein
Chem. Soc. Rev. 39, 156–164
Römer L., Scheibel T.
The elaborate structure of spider silk: Structure and function of a natural high performance fiber
Prion 2, 154-161
Scheibel T
Spinnenseide: Was Spiderman wissen sollte
Biospektrum
Heim M., Keerl D., Scheibel T.
Spider Silk: From Soluble Protein to Extraordinary Fibers
Angew. Chem. Int. Edit. 48, 3584-3596
Liebmann B., Hümmerich D., Scheibel T, Fehr M.
Formulation of poorly water-soluble substances using self-assembling spider silk protein
Colloids Surf., A 331, 126-132
Slotta U.K., Rammensee S., Gorb S., Scheibel T.
An engineered spider silk protein forms microspheres
Angew. Chem. Int. Ed. 47, 4592-459
Lammel A., Schwab M., Slotta U.K., Winter G., Scheibel T.
Processing conditions for spider silk microsphere formation
ChemSusChem 5, 413-416
Rammensee S., Slotta U.K, Scheibel T., Bausch A.R.
Assembly mechanism of recombinant spider silk proteins
Proc. Natl. Acad. Sci. USA. 105, 6590-6595
Horinek D., Serr A., Geisler M., Pirzer T., Slotta U.K., Lud S.Q., Garrido J.A., Scheibel T., Hugel T., Netz R.R.
Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces
Proc. Natl. Acad. Sci. USA. 105, 2842-2847
Geisler M., Pirzer T., Ackerschott C., Lud S., Garrido A.J., Scheibel T., Hugel T.
Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study
Langmuir 24, 1350-1355
Krammer C., Suhre M.H., Kremmer E., Diemer C., Hess S., Schätzl H.M., Scheibel T., Vorberg I.
Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells
FASEB J. 22, 762-773
Hardy J., Römer L ., Scheibel T.
Polymeric materials based on silk proteins
Polymer 49, 4309-4327
Römer L., Scheibel T.
Spinnen wie die Spinnen
Nachrichten a. d. Chem. 56, 516-519
Scheibel T., Weidenauer U.
Spinnenseidenproteine als pharmazeutischer Hilfsstoff
Dtsch. Apoth. Ztg. 48, 29.
Lammel A., Keerl D., Römer L., Scheibel T.
Proteins: Polymers of natural origin
In: J. Hu (Ed.), Recent Advances in Biomaterials Research, 1-22
Vendrely C., Ackerschott C., Römer L., Scheibel T.
Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials
Methods. Mol. Biol. 474, 3-14.
Hermanson K D., Harasim M B., Scheibel T., Bausch A R.
Permeability of silk microcapsules made by the interfacial adsorption of protein
Phys. Chem. Chem. Phys. 9, 6442-6446
Hess S., Lindquist S., Scheibel T.
Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM
EMBO Rep. 8,1196-1201
Scheibel T, Römer L., Spieß K., Slotta U.
Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand
GIT Labor-Fachz. 11, 928-931
Dong J., Bloom D J., Goncharov V., Chattopadhyay M., Millhauser L G., Lynn G D., Scheibel T., Susan L.
Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions
J. Biol. Chem. 282, 47, 34204–34212
Metwalli E., Slotta U., Darko C., Roth S V., Scheibel T., Papadakis C M.
Structural changes of thin films from recombinant spider silk proteins upon post treatment
Appl. Phys. A. 89, 655-661
Schmidt M., Romer L., Strehle M., Scheibel T.
Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media
Biotechnol. Lett. 29, 1741-1744
Hermanson K D., Huemmerich D., Scheibel T., Bausch A R.
Engineered microcapsules made of reconstituted spider silk
Adv. Mater. 19, 1810-1815
Exler J H., Hümmerich D., Scheibel T.
The amphiphilic properties of spider silks are important for spinning
Angew. Chem. Int. Edit. 46, 3559-3562
Slotta U., Hess S., Spiess K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils – a structural comparison
Macromol. Biosci. 7, 183-188
Lodderstedt G., Hess S., Hause G., Scheuermann T., Scheibel T., Schwarz E.
Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1
FEBS.J.274, 2, 346-355.
Römer L., Scheibel T.
Grundlagen für neue Materialien – Seidenproteine
Chemie i. u. 41, 306-314
Vendrely C., Scheibel T.
Biotechnological production of spider silk proteins enables new applications
Macromol Biosci. 7, 4, 401-409.
Scheibel T., Roemer L.
Herstellung und Anwendung von Spinnenseide
Bionik: Patente aus der Natur, 3, 130-139
Sen Gupta S., Scheibel T.
Folding, self-assembly and conformational switches of proteins.
Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, 1-33
Slotta U., Tammer M., Kremer F., Koelsch P., Scheibel T.
Structural analysis of films cast from recombinant spider silk proteins
Supramol. Chem. 18, 465-471
Rammensee S., Huemmerich D., Hermanson K., Scheibel T., Bausch A.
Rheological characterisation of recombinant spider silk nanofiber networks
Appl. Phys. A. 82, 261-264
Junghans F., Morawietz M., Conrad U., Scheibel T., Heilmann A., Spohn U.
Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm
Appl. Phys. A. 82, 253-260
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Statistical approaches for investigating silk properties
App. Phy. A. 82, 2, 243–251
Huemmerich D., Slotta U., Scheibel T.
Processing and modification of films made from recombinant spider silk proteins
Appl. Phys. A. 82, 219-222
Scheibel T.
Editorial: Silk–a biomaterial with several facets
Appl. Phys. A 82, 191-192
Scheibel T., Buchner J.
Protein Aggregation as a Cause for Disease
Handb. Exp. Pharmacol. 199-219
Scheibel T., Vendrely C.
Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms
Prions: New Res. pp. 251-284
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Spatial stochastic resonance in protein hydrophobicity
Phys. Lett. A. 346, 33-41
Junger A., Kaufmann D., Scheibel T., Weberskirch R.
Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment
Macromol. Biosciences 5, 494-501
Scheibel T.
Protein fibers as performance proteins: new technologies and applications
Curr. Opin. Biotech. 16, 427-433
Scheibel T., Serpell L.
Methods to study fibril formation
Protein Folding Handb.Vol. II, pp. 193-249
Huemmerich D., Scheibel T., Vollrath F., Cohen S., Gat U., Ittah S.
Novel assembly properties of recombinant spider dragline silk protein
Curr. Biol. 14, 2070-2074
Huemmerich D., Helsen C W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T.
Primary structure elements of dragline silks and their contribution to protein solubility and assembly
Biochem. 43, 13604-13612
Scheibel T., Bloom J., Lindquist S L.
The elongation of yeast prion fibers involves separable steps of association and conversion
Proc. Natl. Acad. Sci. USA 101, 2287-2292
Scheibel T.
Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Microb. Cell Fact. 3, 14-21
Scheibel T., Buchner J.
Book Review: Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease: Principles and Methods
Chem.Bio.Chem. 5, 1153-1154
Scheibel T.
Amyloid formation of a yeast prion determinant
J. Mol. Neurosci. 23, 13-22
Scheibel T., Parthasarathy R., Sawicki G., Lin X-M., Jaeger H., Lindquist S.
Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition
Proc. Natl. Acad. Sci. USA 100, 4527-4532