Hybridmaterialien
Die Anwendung der Prinzipien der Selbstorganisation zur Kontrolle der nano- und mikroskaligen Strukturierung von Biomaterialien steht im Fokus unserer Gruppe. Selbstorganisation basiert auf einem thermodynamisch gesteuerten, autonomen Mechanismus nicht-kovalenter Wechselwirkungen zwischen verschiedenen Bausteinen. Diese „bottom up“-Bildung von Strukturen auf verschiedenen Hierarchieebenen ist inspiriert von natürlichen Prozessen, die hoch organisierte Materialien mit außergewöhnlichen Eigenschaften wie Knochen, Muscheln oder Spinnenseide ermöglichen.
Beispiele für unsere Forschung sind DNA-Protein-Hybridkonstrukte auf Basis von rekombinanter Spinnenseide und definierten Nukleinsäuresequenzen, sowie Fusionsproteine. Die DNA-Protein-Hybride nutzen die Vorteile von Nukleinsäuren, die sich mit Präzision und Vorhersagbarkeit selbst zusammensetzen, z.B. bei der Programmierung und Faltung von DNA-Origami, und von Spinnenseidenprotein, das sich zu Nanofibrillen mit hoher Umwelt- und Chemikalienstabilität sowie mechanischer Steifigkeit zusammenfügt. Bei den Fusionsproteinen bringen wir mit Hilfe von genetischen Fusionen neue Funktionen in die selbstorganisierende Spinnenseide ein. Durch die Steuerung des Fusions- und Assemblierungsprozesses bleiben die strukturellen und funktionellen Eigenschaften erhalten.
Durch unsere Forschung verfolgen wir die Entwicklung komplexer nano- bis mikroskaliger Materialien mit kontrollierter Ergänzung von Funktionalitäten wie Ligandenbindung, Katalysator und/oder Lichtemission. Dies ermöglicht die Entwicklung neuartiger nanostrukturierter und hierarchisch geordneter Materialien für die Entwicklung innovativer Verbundwerkstoffe.
Research Projects

Dr. Humenik, Martin
martin.humenik(.at.)bm.uni-bayreuth.de
0921-55 6725
Nucleic acids could self-assemble into many different nano-structures with precision and predictability, which is unrivaled among the natural and synthetic materials. One of the best example for such high fidelity is represented by the DNA origami programming and folding. On the other hand, recombinant proteins, which we are focusing on, also self-assemble into nanofibrils, supramolecular structures of densely packed cross-beta sheets. Such fibrils, typically 10 nm in diameter and hundreds nanometers long, possess high environmental and chemical stability as well as mechanical rigidity. Such systems are represent attractive scaffolds for creation of ordered nanomaterials.
To take advantage of both, protein and DNA materials, we chemically combine recombinant spider silk and nucleic acids in hybrid entities. We investigate fundamental properties of the protein hybrids to realize their utilization in materials research. We study new chemical modifications and conjugations of the building blocks, arrangements protein moieties upon hybridizations of DNA, corresponding morphology and structure of conjugate fibrils. Further, we use specific DNA hybridization to trigger self-organization of the fibrils into hierarchical structures.
Fig. 1: Self-organization of DNA-protein hybrid materials in bottom up manner in solutions: Spider silk moieties in the hybrids, prepared by a chemical conjugation with DNA, were spatially arranged into branched structures using designed DNA hybridization and self-assembled into ribbons, which further self-organized into micro-rafts due to DNA interaction at specific temperature gradients.
Fig. 2: Pattering of the hybrid materials using DNA-directed hybridization technology: Surfaces modified by capture DNA were specifically linked to complementary DNA-spider silk conjugates on defined position using micro-contact printing technology. Immobilized conjugates served as nucleation sides for silk fibrils growth from the surface.

Dr. Humenik, Martin
martin.humenik(.at.)bm.uni-bayreuth.de
0921-55 6725
We introduce new functions to the self-assembling spider silk domain using genetic fusions. As an example, GFP was successfully fused on the C-terminus with the recombinant spider silk. Both moieties, the silk and the GFP, retained native structures in the fusion as well as respective properties, the self-assembly of the silk in to fibrils and hydrogels as well as fluorescent activity of the GFP.
Fig. 3: Functional protein hybrids prepared by fusion of globular and structuring moieties. Schematic representation of GFP (1EMA) fused to the spider silk eADF4(C16). The protein self-assembled into fluorescently active nanoscopic fibrils, which were processed into hydrogels.
Publications
Humenik, M., Winkler, A. & Scheibel, T.
Patterning of protein-based materials
Biopolymers, 2020; online Dec. 2020
Mathilde Lefevre, Patrick Flammang , A. Sesilja Aranko , Markus B. Linder , Thomas Scheibel , Martin Humenik , Maxime Leclercq , Mathieu Surin , Lionel Tafforeau, Ruddy Wattiez, Philippe Leclère, Elise Hennebert
Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings
Humenik M., Preiß T., Goedrich S., Papastavrou G., Scheibel T.
Functionalized DNA spider silk nanohydrogels for controlled protein binding and release
Materials Today Bio, 6, 100045
Humenik M., Pawar K., Scheibel T.
Nanostructured, self-assembled spider silk materials for biomedical applications
In: S. Perrett et al. (eds.), Biological and Bio-inspired Nanomaterials, (Advances in Experimental Medicine and Biology 1174), 187-221
DeSimone E., Aigner T. B., Humenik M., Lang G., Scheibel T.
Aqueous electrospinning of recombinant spider silk proteins
Mater. Sci. Eng. C, 106, 110145
Humenik M., Mohrand M., Scheibel T.
Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.
Bioconjugate Chem., 29: 898 – 904.
Molina A., Humenik M., Scheibel T.
Nanoscale patterning of surfaces via DNA directed spider silk assembly
Biomacromol., 20, 347-352
Humenik M., Lang G., Scheibel T.
Silk nanofibril self-assembly versus electrospinning
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10: e1509
Humenik M., Smith A M., Arndt S., Scheibel T.
Data for ion and seed dependent fibril assembly of a spidroin core domain
Data in Brief, 4: 571–576
Humenik M., Smith A., Arndt S., Scheibel T.
Ion and seed dependent fibril assembly of a spidroin core domain
J. Struct. Biol. 191: 130–138
Humenik M., Markus D., Scheibel T.
Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Nano Lett.., 14, 3999−4004
Humenik M., Magdeburg M., Scheibel T.
Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
J. Struct. Biol., 186, 431-437
Humenik M., Scheibel T.
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
ACS Nano 8, 1342-1349
Humenik M., Scheibel T.
Self-assembly of nucleic acids, silk and hybrid materials thereof
J. Phys. Condens. Matter 26, 503102
Humenik M., Smith A., Scheibel T.
Recombinant spider silks – biopolymers with potential for future applications
Polymers 3, 640–661
Humenik M., Scheibel T., Smith A.
Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber
Prog. Mol. Biol. Transl. Sci. 103, 131-185.