Prof. Dr. Scheibel, Thomas
Open ResumeBiofabrication
Biofabrication is an interdisciplinary research field with the aim of generating functional tissue constructs. The basic components therefor are cells, matrix materials and growth factors. Principles and methods from medicine, natural sciences and engineering are combined to develop and apply a fundamental understanding of the relationship between the structure and function of tissues. Necessary properties of implants are a defined 3D structure, a tissue-specific hierarchical morphology and a biocompatible biochemical composition.
The Biofabrication working group is investigating the suitability and processing of various biopolymers – including structural proteins – for tissue regeneration. In order to enable a precise three-dimensional arrangement of the cell-material scaffolds, new cell-friendly bio-inks are also being developed for 3D bio-printing. In particular, recombinantly produced spider silk proteins are modified for specific applications and processed into films, hydrogels, foams, nonwoven meshes, and nanofibres with aligned structures and controlled topographies using different processing methods.
Research Projects
Ng, Xuen (M.Sc.)
xuen.ng(.at.)uni-bayreuth.de
0921-55 6709
To date, organ transplantation is the most effective clinical solution for the treatment of severe organ failure. While the liver, kidney, heart, pancreas and lung are among the most commonly needed donor organs worldwide, the pancreas, lung or heart in particular are only available post mortem. With the increasing availability of 3D printing methods and the establishment of induced pluripotent stem cells, biomedical research has moved towards the biofabrication of artificial tissue. In the future, it should also be possible to produce entire organs from a patient’s own body cells. In the case of the heart, the regenerative capacity of muscle tissue is particularly limited, meaning that organ function can be severely restricted in the event of damage, e.g. due to a heart attack. This may be compensated for by implanting tissue patches. Hydrogels as polymer networks are of particular relevance for the fabrication of such artificial tissues, as they resemble natural tissue with high water content. In this regard, biopolymers such as recombinant spider silk are well suited to extend the processing window for good processability without impairing cell function, as they can be modified by molecular biological methods and can also be processed into various morphologies, including hydrogels.
Thus, this project aims for the optimization and development of recombinant spider silk protin-based bioinks for the culture of hiPSC derived cardiomyocytes to allow higher complex structures.
Heinritz, Christina (M. Sc.)
christina1.heinritz(.at.)uni-bayreuth.de
0921 55-6708
Artificial engineered tissues are an attractive alternative to transplantation for the treatment of severely damaged or even lost tissues/organs due to disease or injury. These consist of three main components: Cells, a suitable scaffold structure and signals such as growth factors or mechanical/electrical stimuli. Spider silk materials are suitable for such a scaffold structures due to their biodegradability, biocompatibility and not eliciting an immune response in the human body.
A major challenge in tissue engineering and biofabrication of 3D scaffolds is the adequate supply of oxygen and nutrients due to the lack of a functioning vascular system. In nature, new blood vessels are formed in the early embryonic stage by differentiation of angioblasts into endothelial cells, a process called vasculogenesis. Angiogenesis describes the sprouting of capillaries from already existing vessels. In this project, a hierarchically structured tissue with tubular elements for oxygen and nutrient supply should be produced, forming the basis for later vascularisation of the constructs after tissue maturation. For this purpose, recombinant spider silk proteins are processed through different methods, and the resulting constructs are seeded with cells to mimic the natural vascular structure.
Claussen, Julia (M.Sc.)
julia.claussen(.at.)uni-bayreuth.de
0921-55 6706
My project concerns reconnecting damaged peripheral nerves. The goal is to develop a selfrolling graft which wraps around the nerve stumps and promotes nerve regeneration. The graft will be promoting the transdifferentiation of Schwann cells into their repair function in order to guide the axons of the damaged nerve.
The project combines biomaterial research and cell culture. On the one hand, a polysaccharide-based self-rolling construct with aligned, electro-spun protein fibres made from recombinant spider silk will be developed. On the other hand, these constructs will be tested in cell culture experiments to analyse the viability, proliferation, morphology and adherence of Schwann cells. Furthermore, a co-culture with nerve cells with activatable neurite growth will be established to investigate the complex interaction of Schwann cells and neurones in the biomaterial constructs.
In the case of severe skin injuries, the body’s wound healing mechanisms are often insufficient. For their treatment, tissue engineering methods are increasingly coming into focus. A suitable scaffold for skin regeneration should enable immediate closure of the wound, suppress infections, accelerate wound healing and reduce scarring, among other aspects.
The aim of this project is to create two-layered skin constructs fulfilling the aforementioned properties. The construct will contain a dermal layer with fibroblasts and an epidermal layer with keratinocytes. The cell-material interactions as well as morphology, proliferation, differentiation and migration of these cells will be tested in 3D cell culture using different biomaterial scaffolds. A special focus is on materials based on recombinantly produced spider silk proteins, which are used in the morphologies foam, hydrogel and non-woven meshes.
Rajwar, Ashish (M.Sc.)
ashish.rajwar(.at.)uni-bayreuth.de
0921 55 6705
In recent years, the topic of alternative protein-based food production routes such as lab-grown or cultured meat has become a topic of increasing research. For culturing meat, stem cells are grown in culture medium and differentiated into fat and muscle tissue. While ground meat such as burgers are already produced for the market, culturing structured meat is still a major scientific challenge. The project focuses on the production of cultured meat using protein-based scaffolds. During the course of the project myoblast progenitors (known as myosatellite cells) and adipocyte progenitors (known as adipocyte stem cells or preadipocytes) will be isolated from bovine sources and cultured using hydrogels and cryogels as scaffolds.
Due to its unique mechanical and biochemical properties spider silk is in the focus of research since decades. Spider silk proteins are biodegradable, biocompatible and show no immune reaction in the human body, thereby representing a suitable material for biomedical applications. The development of recombinant technologies, inspired by the natural occurring gene sequences of the European garden spider Araneus diadematus, enable the biotechnological production of spider silk proteins in high-yields. They can be processed into several different morphologies, such as fibers, films, hydrogels, foams, nonwovens and particles, leading to diverse potential applications. With respect to tissue engineering and regenerative medicine, specific cell adhesion is a decisive factor. Since cell attachment to unmodified silk protein is often low, it is sometimes necessary to develop proteins including cell-interacting ligands. The project objective is thus to modify and functionalize biocompatible spider silk scaffolds for guided cell-substrate-interaction by using genetic or chemical coupling and varying processing methods.
Figure 1: Hydrogel and foam made of the recombinant spider silk protein eADF4(C16).
Due to its unique mechanical and biochemical properties spider silk is in the focus of research since decades. Spider silk proteins are biodegradable, biocompatible and show no immune reaction in the human body, thereby representing a suitable material for biomedical applications. The development of recombinant technologies, inspired by the natural occurring gene sequences of the European garden spider Araneus diadematus, enable the biotechnological production of spider silk proteins in high-yields. They can be processed into several different morphologies, such as fibers, films, hydrogels, foams, nonwovens and particles, leading to diverse potential applications. With respect to tissue engineering and regenerative medicine, specific cell adhesion is a decisive factor. Since cell attachment to unmodified silk protein is often low, it is sometimes necessary to develop proteins including cell-interacting ligands. The project objective is thus to modify and functionalize biocompatible spider silk scaffolds for guided cell-substrate-interaction by using genetic or chemical coupling and varying processing methods.
Publications
Bargel H., Scheibel T.
A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
AT–Automatisierungstechnik, 2024, 72, 657-665.
Troßmann, V. & Scheibel, T.
Spider silk and blend biomaterials: recent advances and future opportunities
Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine Woodhead Publishing Series in Biomaterials 2024, Pages 133-190
Charlotte Hopfe, Bryan Ospina-Jara, Thilo Schulze, Marta Tischer, Diego Morales, Vivien Reinhartz, Rashin Esghi Esfahani, Carlos Valderrama, José-Pérez-Rigueiro, Christoph Bleidorn, Heike Feldhaar, Jimmy Cabra-Garcia & Thomas Scheibel
Impact of environmental factors on spider silk properties
Current Biology, January 2024, 34 – 1-12
Lamberger, Z., Zainuddin, S., Scheibel, T. & Lang, G.
Polymeric Janus Fibers
ChemPlusChem 2023, 88
Saric, M. & Scheibel, T.
Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers
Biomacromolecules 2023 24 (4), 1744 – 1750
Martin Reimer, Kai Mayer, Daniel Van Opdenbosch, Thomas Scheibel, & Cordt Zollfrank
Biocompatible Optical Fibers Made of Regenerated Cellulose and Recombinant Cellulose-Binding Spider Silk
Biomimetics 2023, 8, 37
Vanessa T. Trossmann & Thomas Scheibel
Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding
Adv. Healthcare Mater. 2023, 2202660
Mirjam Hofmaier, Mikhail Malanin, Eva Bittrich, Sarah Lentz, Birgit Urban, Thomas Scheibel, Andreas Fery & Martin Müller
β‑Sheet structure formation within binary blends of two spider silk related peptides
Biomacromolecules 2023 24 (2), 825-840
Sarah Lentz, Vanessa T. Troßmann & Thomas Scheibel
Selective Topography Directed Cell Adhesion on Spider Silk Surfaces
Adv. Mater. Interfaces 2022, 2201936
Julia Jasinski, Magdalena V. Wilde, Matthias Voelkl, Valérie Jerôme, Thomas Fröhlich, Ruth Freitag und Thomas Scheibel
Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell Uptake
ACS Applied Materials & Interfaces 2022 14 (41), 47277-47287
Vanessa J. Neubauer, Florian Hüter, Johannes Wittmann, Vanessa T. Troßmann, Claudia Kleinschrodt, Bettina Alber-Laukant, Frank Rieg & Thomas Scheibel
Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels
Biomolecules 2022, 12, 1413
Hendrik Bargel, Vanessa Troßmann, Christoph Sommer & Thomas Scheibel
Bioselectivity of silk protein-based materials and their bio-inspired applications
Beilstein J. Nanotechnol. 2022, 13, 902–921
Vanessa T. Troßmann, Stefanie Heltmann-Meyer, Hanna Amouei, Harald Wajantm, Raymund E. Horch, Dominik Steiner & Thomas Scheibel
Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells
Biomacromolecules 2022 23 (10), 4427-4437
Sarah Lentz, Vanessa T. Troßmann, Christian B. Borkner, Vivien Beyersdorfer, Mrkus Rottmar & Thomas Scheibel
Structure−Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications
ACS Applied Materials & Interfaces 2022 14 (28), 31751-31766
Nicholas J. Chan, Sarah Lentz, Paul A. Gurr, Thomas Scheibel & Greg G. Qiao
Mimicry of silk utilizing synthetic polypeptides
Progress in Polymer Science, Vol. 130, July 2022
Sawan Shetty, Selvakumar Murugesan, Sahar Salehi, Alexandra Pellert, Melanie Scheibel, Thomas Scheibel & Srinivasan Anandhan
Evaluation of piezoelectric behavior and biocompatibility of poly(vinylidene fluoride) ultrafine fibers with incorporated talc nanosheets
Applied Polymer, Vol. 139, Issue 29, Aug. 202
Matthias Völkl, Valérie Jérome, Alfons Weig, Julia Jasinski, Nora Meides, Peter Strohriegl, Thomas Scheibel & Ruth Freitag
Pristine and artificially-aged polystyrene microplastic particles differ in regard to cellular response
Journal of Hazardous Materials, 435 (2022) 128955
Shakir Zainuddin & Thomas Scheibel
Continuous yarn electrospinning
Textiles 2022, 2 (1), 124 – 141
D. Stengel, M. Saric, H. R. Johnson, T. Schiller, J. Diehl, K. Chalek, D. Onofrei, T. Scheibel, G. H. Holland
Tyrosine’s Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers
Herold H.M., Döbl A., Wohlrab S., Humenik M., Scheibel T.
Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release
Biomacromolecules 21, 4904-4912
Lang, G., Grill, C. & Scheibel, T.
Site-specific functionalization of recombinant spider silk Janus fibers
Angewandte Chemie, Int. Edition, online Januar 2022
Schwarzer, M. Brehm, J., Vollmer, M., Jasinski, J., Xu, C., Bin Zainiddin, S., Frazöhlilch, T., Schott, M., Greiner, A., Scheibel, T. &Laforsch, C.
Shape, size, and polymer dependent effects of microplastics on Daphnia magna
Hazardous Materials, 436, 2022
Riedl, S., Völkl, M, Holzinger, A., Jasinski, J., Jerome, V., Scheibel, T., Feldhaar H. & Freitag, R.
In vitro cultivation of primary intestinal cells from Eisenia fetida as basis for ecotoxicological studies
Ecotoxicology, 2021
Koeck, K. S., Salehi, S., Humenik, M. & Scheibel, T.
Processing of Continuous Non-Crosslinked Collagen Fibers for Microtissue Formation at the Muscle-Tendon Interface
Advanced functional materials, 2021
Ramsperger, A., Jasinski, J., Völkl, M., Witzmann, T., Meinhart, M., Jeromoe, V., Kretzschmer, W., Freitag, R., Senker, J., Fery, A., Kress, Hl, Scheibel, T. & Laforsch, Ch.
Supposedly identical microplastic particles substantially differ in their material properties influencing particle-cell interactions and cellular responses
Hazardous Materials, 425, March 5th 2022
Ramsperger, A., Jasinski, J., Völkl, M., Witzmann, T., Meinhart, M., Jerome, V., Kretschmer, W., Freitag, R., Senker, J., Fery A., Kress, H., Scheibel, T. & Laforsch, Ch.
Supposedly identical microplastic particles substantially differ in their material properties influencing particle-cell interactions and cellular responses
Lechner, A., Trossmann, V. & Scheibel, T.
Impact of Cell Loading of Recombinant Spider Silk BasedBioinks on Gelation and Printability
Macromol. Biosci. 2021, 2100390
Laomeephol, C., Vasuratna, A., Ratanavaraporn, J., Kanokpanont, S., Luckanagul, J., Humenik, M., Scheibel, Th. & Damrongsakkul, S.
Impacts of Blended Bombyx mori Silk Fibroin and Recombinant Spider Silk Fibroin Hydrogels on Cell Growth
Polymers. 2021, 13, 4182
Sonnleitner, D., Sommer, Ch., Scheibel, T. & Lang, G.
Approaches to inhibit biofilm formation applying natural and artificial silk-based materials
Materials Science & Engineering, 131, December 2021
Jasinski, J., Völkl, M., Jérome, V., Scheibel, T. & Freitag, R.
Noxic effects of polystyrene microparticles on murine macrophages and epithelial cells
Scientific Reports 11, online 03.08.2021
Steiner, D., Winkler, S., Heltmann-Meyer, S., Troßmann, V., Fey, T., Scheibel, T., Horch, R. & Arkudas, A.
Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model
Biofabrication, Vol. 13, Number 4
Murugesan, S. & Scheibel, T.
Chitosan-based nanocomposites for medical applications
Journal of Polymer Science, online June 2021
Esser, T. U., Troßmann, V. T., Lentz, S., Engel, F. B., & Scheibel, T.
Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering
Materials Today Bio, Band 11 (2021),
Straßburg, St., Bin Zainuddin, S. & Scheibel, Thomas
The Power of Silk Technology for Energy Applications
Adv. Energy Mat. 2021, online May 2021
Röber, M., Scheibel, Th. & Börner, H. G.
Toward Activatable Collagen Mimics: Combining DEPSI “Switch” Defects and Template-Guided Self-Organization to Control Collagen Mimetic Peptides
Macromol. Biosci, online May 2021
Sommer, Ch., Bargel, H., Raßmann, N. & Scheibel, Th.
Microbial repellence properties of engineered spider silk coatings prevent biofilm formation of opportunistic bacterial strains
MRS Communications, Online April 2021
Neubauer, V., Kellner, Ch., Gruen, V., Schenk, A. & Scheibel, Th.
Recombinant major ampullate spidroin-particles as biotemplates for manganese carbonate mineralization
Multifunct. Mater. 4 (2021) 014002
Strassburg, S., Mayer, K. & Scheibel, T.
Functionalization of biopolymer fibers with magnetic nanoparticles
Physical Sciences, online Jan. 21
Neubauer, V., Kellner, Ch., Gruen, V., Schenk, A. & Scheibel, T.
Recombinant major ampullate spidroin-particles as biotemplates for manganese carbonate mineralization
Multifunct. Materials, 2021, 4 014002
Neubauer, V., Döbl, A. & Scheibel, T.
Silk-based materials for hard tissue engineering
Materials, 2021, 14 (3), 674
Saric, M., Eisoldt, L., Döring, V. & Scheibel, T.
Interplay of different Major Ampullate spidroins during assembly and implications for fiber mechanics
Advanced Materials, online Jan. 2021
Hofmaier, M., Urban, B., Lentz, S., Borkner, C., Scheibel, T., Fery, A. & Müller, M.
Dichroic Fourier Transform Infrared Spectroscopy characterization of the β-sheet orientation in spider silk films on silicon substrates
Journal of Physical Chemystry, online Jan. 2021
Humenik, M., Winkler, A. & Scheibel, T.
Patterning of protein-based materials
Biopolymers, 2020; online Dec. 2020
Bargel, H., Hopfe, Ch. & Scheibel, T.
Proteinfasern als Hochleistungsmaterial
Biologie in unserer Zeit, 2020, Vol. 50 (6), 434 – 443
Müller, F. Bin Zainuddin, M. S. & Scheibel, T.
Roll-to-Roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration Applications
Molecules 2020, 25(23), 5540
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N. und Scheibel, T.
Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials
Data in Brief, Vol. 32, Okt.2020
Neubauer, V. & Scheibel, T.
Spider silk fusion proteins for controlled collagen binding and biomineralization
ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608
Haynl, C., Vongsvivut, J., Mayer, K., Bargel, H., Neubauer, V., Tobin, M., Elgar, M. & Scheibel, T.
Free‑standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro‑ and submicron fibers
Sci Rep, 10, 17624 (2020)
Müller, F., Jokisch, S., Bargel, H. & Scheibel, T.
Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers
ASC Applied Polymer Materials,2020 2 (11), 4360-4367
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel , M., Jacobs, K., Krämer, N. & Scheibel, T.
Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials
Data in Brief, Vol. 32, Oct. 2020
Neubauer, V., Scheibel, T.
Spider silk fusion proteins for controlled collagen binding and biomineralization
ACS Biomaterials Science & Engineering 2020 6 (10), 5599-5608
Hopfe, C., Ospina-Jara, B., Scheibel, T., Cabra-Garcia, J.
Ocrepeira klamt sp. n. (Araneae: Araneidae), a novel spider species from an Andean pa´ramo in Colombia
PLOS One
Kumari, S., Lang, G., DeSimone, E., Spengler, C., Trossmann, V., Lücker, S., Hudel, M., Jacobs, K., Krämer, N., Scheibel, T.
Engineered spider silk-based 2D and 3D materials prevent microbial infestation
Mathilde Lefevre, Patrick Flammang , A. Sesilja Aranko , Markus B. Linder , Thomas Scheibel , Martin Humenik , Maxime Leclercq , Mathieu Surin , Lionel Tafforeau, Ruddy Wattiez, Philippe Leclère, Elise Hennebert
Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings
Scheibel T., Weikl T., Buchner J.
Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence
Proc. Natl. Acad. Sci. U S A. 4, 1495- 1499.
Scheibel T., Buchner J.
The Hsp90 complex – a super-chaperone machine as a novel drug target
Biochem. Pharmacol. 6, 675-682.
Scheibel T., Siegmund H. I., Jaenicke R., Ganz P., Lilie H., Buchner J.
The charged region of Hsp90 modulates the function of the N-terminal domain
Proc. Natl. Acad. Sci. U S A. 4, 1297-302
Thomas Scheibel
Spider silk-based biomaterials: a new opportunity for product development in many industries
Weiss A. C. G., Herold H. M., Lentz S., Faria M., Besford Q. A., Ang C.-S., Caruso F., Scheibel T.
Surface modification of spider silk particles to direct biomolecular corona formation
Kramer J. P. M., Aigner T. B., Petzold J., Roshanbinfar K., Scheibel T., Engel F. B.
Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering
Jokisch, S., Bargel, H., Scheibel, T.
Einsatz von Biomaterialien in Filtersystemen – BioFis
In: Bernotat, A. & Berling, J., Prototype Nature
Mertgen A.-S., Trossmann V., Guex A., Maniura-Weber K., Scheibel T., Rottmar M.
Multifunctional biomaterials – Combining material modification strategies for engineering
ACS Appl. Mater. Interface, online first, 0c01893
Murugesan S., Scheibel T.
Copolymer clay nanocomposites for biomedical applications
Adv. Funct. Mater., online first, 1908101
Humenik M., Preiß T., Goedrich S., Papastavrou G., Scheibel T.
Functionalized DNA spider silk nanohydrogels for controlled protein binding and release
Materials Today Bio, 6, 100045
Aigner T. B., Haynl C., Salehi S., O'Connor A., Scheibel T.
Nerve guidance conduit design based on self-rolling tubes
Materials Today Bio, 5, 100042
Salehi S., Koeck K., Scheibel T.
Spider silk for tissue engineering applications
Molecules, 25, 737-757
Fratzl P., Jacobs K., Möller M., Scheibel T., Sternberg K.
Material Science – Inspired by Nature
acatech Diskussion, 2020
Bruns N., Scheibel T.
Biomimetic Polymers – Editorial
Europ. Polym. J., 122, 109370
Humenik M., Pawar K., Scheibel T.
Nanostructured, self-assembled spider silk materials for biomedical applications
In: S. Perrett et al. (eds.), Biological and Bio-inspired Nanomaterials, (Advances in Experimental Medicine and Biology 1174), 187-221
Borkner C. B., Lentz S., Müller M., Fery A., Scheibel T.
Ultra-thin spider silk films: Insights into spider silk assembly on surfaces
ACS Appl. Polym. Mater., 1, 3366-3374
Kumari S., Bargel H., Scheibel T.
Recombinant spider silk silica hybrid scaffolds with drug releasing properties
Macromol. Rapid Commun., 41, 1900426
Pawar K., Welzel G., Haynl C., Schuster S., Scheibel T.
Recombinant spider silk and collagen-based nerve guidance conduits
ACS Appl. Bio Mater., 2, 4872−4880
DeSimone E., Aigner T. B., Humenik M., Lang G., Scheibel T.
Aqueous electrospinning of recombinant spider silk proteins
Mater. Sci. Eng. C, 106, 110145
Saric M., Scheibel T.
Engineering of silk proteins for materials applications
Curr. Opin. Biotechnol., 60, 213–220
Steiner D., Lang G., Fischer L., Winkler S., Fey T., Greil P., Scheibel T., Horch R. E., Arkudas A.
Intrinsic vascularisation of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model
Tissue Eng. Part A, 25, 21-22
Aigner T. B., Scheibel T.
Self-rolling refillable tubular enyme containers
ACS Appl. Mater. Interfaces 2019, 11, 15290-15297
Wang J., Suhre M. H., Scheibel, T.
A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity
Europ. Polym. J., 113, 305–312
Nichtl A., Buchner J., Jaenicke R., Rudolph R., Scheibel T.
Folding and association of β-galactosidase
J. Mol.Biol. 282, 5, 1083-1091
Scheibel T., Buchner J.
Hsp90 proteins – The Hsp90 Family
Guideb. Mol. Chaperones Protein-Folding Catal. 151.
Scheibel T., Neuhofen S., Weikl T., Mayr C., Reinstein J., Vogel P. D., Buchner J.
ATP binding properties of human Hsp90
J. Biol. Chem. 272, 18608-18613
Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J.
Assessment of the ATP binding properties of Hsp90
J. Biol. Chem. 271, 10035–10041
Scheibel T., Bell S., Walke S.
S. cerevisiae and sulfur – a unique way to deal with the environment
FASEB J. 11, 917-921
,
Scheibel T., Parthasarathy R., Sawicki G., Lin X-M., Jaeger H., Lindquist S.
Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition
Proc. Natl. Acad. Sci. USA 100, 4527-4532
Scheibel T
Amyloid formation of a yeast prion determinant
J. Mol. Neurosci. 23, 13-22
Scheibel T., Buchner J.
Book Review: Methods in Molecular Biology, Vol. 232: Protein Misfolding and Disease: Principles and Methods.
Chem.Bio.Chem. 5, 1153-1154
Scheibel T.
Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Microb. Cell Fact. 3, 14-21
Scheibel T., Bloom J., Lindquist S L.
The elongation of yeast prion fibers involves separable steps of association and conversion
Proc. Natl. Acad. Sci. USA 101, 2287-2292
Huemmerich D., Helsen C W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T.
Primary structure elements of dragline silks and their contribution to protein solubility and assembly
Biochemistry 43, 13604-13612
Huemmerich D., Scheibel T., Vollrath F., Cohen S., Gat U., Ittah S.
Novel assembly properties of recombinant spider dragline silk protein
Curr. Biol. 14, 2070-2074
Scheibel T., Serpell L.
Methods to study fibril formation
Protein Folding Handb.Vol. II, pp. 193-249
Scheibel T.
Protein fibers as performance proteins: new technologies and applications
Curr. Opin. Biotech. 16, 427-433
Junger A., Kaufmann D., Scheibel T., Weberskirch R.
Biosynthesis of an elastin-mimetic polypeptide with two different chemical functional groups within the repetitive elastin fragment
Macromol. Biosciences 5, 494-501
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Spatial stochastic resonance in protein hydrophobicity
Phys. Lett. A. 346, 33-41
Scheibel T., Vendrely C.
Mammalian Versus Yeast Prions – Biophysical Insights in Structure and Assembly Mechanisms
Prions: New Res. pp. 251-284
Scheibel T., Buchner J.
Protein Aggregation as a Cause for Disease
Handb. Exp. Pharmacol. 199-219
Scheibel T.
Editorial: Silk–a biomaterial with several facets
Appl. Phys. A 82, 191-192
Huemmerich D., Slotta U., Scheibel T.
Processing and modification of films made from recombinant spider silk proteins
Appl. Phys. A 82, 219-222
Zbilut J P., Scheibel T., Huemmerich D., Webber C L., Colafranceschi M., Giuliani A.
Statistical approaches for investigating silk properties
App. Phy. A . 82, 2, 243–251
Junghans F., Morawietz M., Conrad U., Scheibel T., Heilmann A., Spohn U.
Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm
Appl. Phys. A. 82, 253-260
Rammensee S., Huemmerich D., Hermanson K., Scheibel T., Bausch A.
Rheological characterisation of recombinant spider silk nanofiber networks
Appl. Phys. A 82, 261-264
Slotta U., Tammer M., Kremer F., Koelsch P., Scheibel T.
Structural analysis of films cast from recombinant spider silk proteins
Supramol. Chem. 18, 465-471
Sen Gupta S., Scheibel T.
Folding, self-assembly and conformational switches of proteins.
Protein Folding-Misfolding: Some Current Concepts of Protein Chemistry, 1-33
Scheibel T., Roemer L.
Herstellung und Anwendung von Spinnenseide
Bionik: Patente aus der Natur, 3, 130-139
Vendrely C., Scheibel T.
Biotechnological production of spider silk proteins enables new applications
Macromol Biosci. 7, 4, 401-409.
Römer L., Scheibel T.
Grundlagen für neue Materialien – Seidenproteine
Chemie i. u. 41, 306-314
Lodderstedt G., Hess S., Hause G., Scheuermann T., Scheibel T., Schwarz E.
Effect of OPMD-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1
FEBS. J.274, 2, 346-355.
Slotta U., Hess S., Spiess K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils – a structural comparison
Macromol. Biosci. 7, 183-188
Exler J H., Hümmerich D., Scheibel T.
The amphiphilic properties of spider silks are important for spinning
Angew. Chem. Int. Edit. 46, 3559-3562
Hermanson K D., Huemmerich D., Scheibel T., Bausch A R.
Engineered microcapsules made of reconstituted spider silk
Adv. Mater. 19, 1810-1815
Schmidt M., Romer L., Strehle M., Scheibel T.
Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media
Biotechnol. Lett. 29, 1741-1744
Metwalli E., Slotta U., Darko C., Roth S V., Scheibel T., Papadakis C M.
Structural changes of thin films from recombinant spider silk proteins upon post treatment
Appl. Phys. A. 89, 655-661
Dong J., Bloom D J., Goncharov V., Chattopadhyay M., Millhauser L G., Lynn G D., Scheibel T., Susan L.
Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions
J. Biol. Chem. 282, 47, 34204–34212
Scheibel T, Römer L., Spieß K., Slotta U.
Transparente Folien aus Spinnenseide – Ein Hocheistungsmaterial aus der Natur in neuem Gewand
GIT Labor-Fachz. 11, 928-931
Hess S., Lindquist S., Scheibel T.
Alternate assembly pathways of the amyloidogenic yeast prion determinant Sup35p-NM
EMBO Rep. 8,1196-1201
Hermanson K D., Harasim M B., Scheibel T., Bausch A R.
Permeability of silk microcapsules made by the interfacial adsorption of protein
Phys. Chem. Chem. Phys. 9, 6442-6446
Vendrely C., Ackerschott C., Römer L., Scheibel T.
Molecular design of performance proteins with repetitive sequences: Recombinant flagelliform spider silk as basis for biomaterials
Methods. Mol. Biol. 474, 3-14.
Lammel A., Keerl D., Römer L., Scheibel T.
Proteins: Polymers of natural origin
In: J. Hu (Ed.), Recent Advances in Biomaterials Research, 1-22
Scheibel T., Weidenauer U.
Spinnenseidenproteine als pharmazeutischer Hilfsstoff
Dtsch. Apoth. Ztg. 48, 29.
Römer L., Scheibel T.
Spinnen wie die Spinnen
Nachrichten a. d. Chem. 56, 516-519
Hardy J., Römer L ., Scheibel T.
Polymeric materials based on silk proteins
Polymer 49, 4309-4327
Krammer C., Suhre M.H., Kremmer E., Diemer C., Hess S., Schätzl H.M., Scheibel T., Vorberg I.
Prion protein/protein interactions: Fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells
FASEB J. 22, 762-773
Geisler M., Pirzer T., Ackerschott C., Lud S., Garrido A.J., Scheibel T., Hugel T.
Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: An AFM-based single-molecule study
Langmuir 24, 1350-1355
Horinek D., Serr A., Geisler M., Pirzer T., Slotta U.K., Lud S.Q., Garrido J.A., Scheibel T., Hugel T., Netz R.R.
Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces
Proc. Natl. Acad. Sci. USA. 105, 2842-2847
Scheibel T, S. Rammensee, U. Slotta, A. R. Bausch
Assembly mechanism of recombinant spider silk proteins
Proc. Natl. Acad. Sci. USA. 105, 6590-6595
Lammel A., Schwab M., Slotta U.K., Winter G., Scheibel T.
Processing conditions for spider silk microsphere formation
ChemSusChem 5, 413-416
Slotta U.K., Rammensee S., Gorb S., Scheibel T.
An engineered spider silk protein forms microspheres
Angew. Chem. Int. Ed. 47, 4592-459
Liebmann B., Hümmerich D., Scheibel T., Fehr M.
Formulation of poorly water-soluble substances using self-assembling spider silk protein
Colloids Surf., A 331, 126-132
Heim M., Keerl D., Scheibel T.
Spider Silk: From Soluble Protein to Extraordinary Fibers
Angew. Chem. Int. Edit. 48, 3584-3596
Scheibel T
Spinnenseide: Was Spiderman wissen sollte
Biospektrum
Römer L., Scheibel T.
The elaborate structure of spider silk: Structure and function of a natural high performance fiber
Prion 2, 154-161
Heim M., Römer L., Scheibel T.,
Hierarchical structures made of protein. The complex architecture of spider webs and their constituent silk protein
Chem. Soc. Rev. 39, 156–164
Grunwald I., Rischka K., Kast S M., Scheibel T., Bargel H.
Mimicking biopolymers on a molecular scale: Nano(bio)technology based on engineered protein
Phil. Trans. Roy. Soc. London: A 367, 1727-1747
Hardy J G., Scheibel T.
Production and processing of spider silk proteins
J. Polymer. Sci.Part A: Polymer .Chem. 47, 3957–3963
Hardy J G., Scheibel T.
Silk-inspired polymers and proteins
Biochem. Soc. Trans. 37, 677–681
Smith A M., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Hagenau A., Scheidt H A., Serpell L., Huster D., Scheibel T.
Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis
Macromol. Biosciences 9, 162-168
Krammer C., Kryndushkin D., Suhre M H., Kremmer E., Hofmann A., Pfeifer A., Scheibel T., Wickner R B., Schätzl H M., Vorberg I.
The yeast Sup35NM domain propagates as a prion in mammalian cells
Proc. Natl. Acad. Sci. USA 106, 462-467
Pirzer T., Geisler M., Scheibel T., Hugel T.
Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
Physical Biol. J. 6, 025004
Vézy C., Hermanson.D K., Scheibel T., Bausch A R.
Interfacial rheological properties of recombinant spider-silk proteins
Biointerphases 4, 43-46
Suhre M H., Hess S., Golser A V., Scheibel T.
Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM
J. Inorg. Biochem. 120, 1711-1720
Heim M., Römer L., Scheibel T.
Hierarchical structures made of protein.The complex architecture of spider webs and their constituent silk proteins
Chem. Soc. Rev.39, 156–164
Egaña-L A., Scheibel T.
Silk-based materials for biomedical applications
Biotechnol. Appl. Biochem. 55, 155–167
Hardy J G., Scheibel T.
Composite materials based on silk proteins
Progr. Polymer Sci. 35, 1093-1115
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol. Biosciences. 10, 998-1007
Scheibel T.
Advanced Biomaterials
Macromol. Biosciences. 10, 674
Scheibel T.
Spider silk from nature to bio-inspired materials
Chem. Fiber. Int. 3, 15-16
Heim M., Ackerschott C B., Scheibel T.
Characterization of recombinantly produced spider flagelliform silk domains
J. Struct. Biol. 170, 420–425
Eisoldt L., Hardy J G., Heim M., Scheibel T.
The role of salt and shear on the storage and assembly of spider silk proteins.
J. Struct. Biol. 170, 413–419
Hagenau A., Scheibel T.
Towards the recombinant production of mussel byssal collagens
J. Adhesion. 86, 10-24
Lammel A S., Hu X., Park S H., Kaplan D L., Scheibel T.
Controlling silk fibroin particle features for drug delivery
Biomaterials. 31, 4583-4591
Hagn F., Eisoldt L., Hardy J G., Vendrely C., Coles M., Scheibel T., Kessler H.
A conserved spider silk domain acts as a molecular switch that controls fibre assembly
Nature 365, 239-242
Keerl D., Hardy J G., Scheibel T.
Biomimetic spinning of recombinant silk proteins
Mater. Res. Soc. Symp. Proc. 07-20,1239
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter. 6, 4168–4174
Humenik M., Scheibel T., Smith A.
Spider Silk: Understanding the Structure–Function Relationship of a Natural Fiber
Prog. Mol. Biol. Transl. Sci. 103, 131-185.
Eisoldt L., Smith A., Scheibel T.
Decoding the secrets of spider silk
Materials Today 14, 80–86
Spiess K., Lammel A., Scheibel T.
Recombinant spider silk proteins for applications in biomaterials
Macromol.Biosci.2011, S32-S41
Humenik M., Smith A., Scheibel T.
Recombinant spider silks – biopolymers with potential for future applications
Polymers 3, 640–661
Hagn F., Thamm C., Scheibel T., Kessler H.
pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation
Angew. Chem. Int. Ed. 50, 310-313
Lammel A., Schwab M., Hofer M., Winter G., Scheibel T.
Recombinant spider silk particles as drug delivery vehicles
Biomaterials 32, 2233–2240
Hagenaua A., Papadopoulos P., Kremer F., Scheibel T.
Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads
J. Structural Biol. 175, 339-347
Schacht K., Scheibel T.
Controlled hydrogel formation of a recombinant spider silk protein
Biomacromol. 12, 2488–2495
Spiess K., Ene R., Keenan C D., Senker J., Kremerb F., Scheibel T.
Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films
J. Mater. Chem. 21, 13594-13604
Slotta U., Hess S., Spieß K., Stromer T., Serpell L., Scheibel T.
Spider silk and amyloid fibrils: A structural comparison
Macromol. Biosci. 7, 73-90
Eisoldt L., Thamm C., Scheibel T.
The role of terminal domains during storage and assembly of spider silk proteins
Biopolymers 97, 355-361
Claussen K U., Scheibel T., Schmidt H W., Giesa R.
Polymer gradient materials: can nature teach us new tricks?
Macromol. Mater. Eng. 297, 938–957
Claussen K U., Giesa R., Scheibel T., Schmidt H W.
Learning from nature: synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads
Macromol. Rapid Commun. 33, 206-211
Bluem C., Scheibel T.
Control of drug loading and release properties of spider silk sub-microparticles
BioNanoSci. 2, 67-74
Egaña-L A., Lang G., Mauerer C., Wickinghoff J., Weber M., Geimer S., Scheibel T.
Interactions of fibroblasts with different morphologies made of an engineered spider silk protein
Adv. Eng. Mater. 14, B67-B75
Keerl D., Scheibel T.
Characterization of natural and biomimetic spider silk fibers
Bioinspired, Biomimetic Nanobiomater.1, 83-94
Bauer F., Scheibel T.
Artificial egg stalks made of a recombinantly produced lacewing silk protein
Ang. Chemie Intl. Edit. 124, 6627-6630
Egañaa-L A., Scheibel T.
Interactions of cells with silk surfaces
J. Mater. Chem. 22, 14330-14336
Wohlrab S., Müller S., Schmidt A., Neubauer S., Kessler H., Egaña-L A., Scheibel T.
Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
Biomaterials 33, 6650-6659
Young L S., Gupta M., Hanske C., Fery A., Scheibel T., Tsukruk V V.
Utilizing conformational changes for patterning thin films of recombinant spider silk proteins
Biomacromol. 13, 10, 3189-3199
Wohlrab S., Spießa K., Scheibel T.
Varying surface hydrophobicities of coatings made of recombinant spider silk proteins
J. Mater. Chem. 22, 22050-22054
Bauer F., Bertinetti L., Masic A., Scheibel T.
Dependence of mechanical properties of lacewing egg stalks on relative humidity
Biomacromolecules. 13, 3730-3735
Smith A., Scheibel T.
Hierarchical Protein Assemblies as a Basis for Materials
In: Materials Design Inspired by Nature: Function Through Inner Architecture (Eds. Fratz P., Dunlop J. W. C., Weinkamer R.), 256-281
Lauterbach A. Y., Scheibel T.
Determining the Environmental Benefit of Artificial Spider Silk Products
NSTI-Nanotech., 3, 108-111
Wohlrab S., Thamm C., Scheibel T.
The Power of Recombinant Spider Silk Proteins
In: Biotechnology of Silk (Eds Asakura T., Miller T.), 179-201
Heidebrecht A., Scheibel T.
Recombinant production of spider silk proteins
Adv. Appl. Microbiol. 82, 115-153
Lintz E. S., Scheibel T.
Dragline, egg stalk, and byssus – A comparison of outstanding protein fibers
Adv. Funct. Mater., 23, 4467–4482
Scheibel T.
Spinnenseide – Biotechfaser mit naturidentischer Belastbarkeit
Chemie & More, 4, 3-5
Hofmann J. P., Denner P., Krammer N. C., Kuhn P. H., Suhre M. H., Scheibel T., Lichtenthaler S. F., Schätzl H. M., Bano D., Vorberg I. M.
Cell-to-cell propagation of infectious cytosolic protein aggregates
Proc. Natl. Acad. Sci. U S A., 110, 5951–5956
Lang G., Jokisch S., Scheibel T.
Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
J. Vis. Exp., 75, e50492
Claussen K. U., Lintz E. S., Giesa R., Schmidt H. W., Scheibel T.
Protein gradient films of fibroin and gelatine
Macromol. BioSci., 13, 1396–1403
Hardy J. G., Leal-Egaña A., Scheibel T.
Engineered spider silk protein-based composites for drug delivery
Macromol. BioSci., 13, 1431–1437
Neubauer P. M., Blüm C., Agostini E., Engert J., Scheibel T., Fery A.
Micromechanical characterization of spider silk particles
Biomater. Sci., 1, 1160-1165
Helfricht N., Klug M., Mark A., Kuznetsov V., Blüm C., Scheibel T., Papastavrou G.
Surface properties of spider silk particles in solution
Biomater. Sci., 1, 1166-1171
Bauer F., Wohlrab S., Scheibel T.
Controllable cell adhesion, growth and orientation on layered silk protein films
Biomater. Sci., 1, 1244-1249
Blüm C., Nichtl A., Scheibel T.
Spider silk capsules as protective reaction containers for enzymes
Adv. Funct. Mater., 24, 763–768
Heim M., Elsner M B., Scheibel T.
Lipid-specific ß-sheet formation in a mussel byssus protein domain
Biomacromolecules, 14, 3238-3245
Keerl D., Scheibel T.
Rheological characterization of silk solutions
Green Materials, 2, 11-23
Neuenfeldt M., Scheibel T.
Silks From Insects – From Natural Diversity to Application
Insect Molecular Biology and Ecology, 376-400
Scheibel T.
Die Natur als Vorbild für bioinspirierte Materialien der Zukunft
TIB, 33-36
Hagenau A., Suhre H M., Scheibel T.
Nature as a blueprint for polymer material concepts: protein fiber-reinforced composits as holdfasts of mussels
Progr. Polym. Sci. 39, 1564-1583
Schacht K, Scheibel T
Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
Curr. Opin. Biotechnol. 29, 62-69 doi: 10.1016/j.copbio.2014.02.015
Lang G., Scheibel T.
Multifunktionale Spinnenseide – ein vielversprechender Werkstoff
MaschinenMarkt 26, 36-39
Borkner B C., Elsner B M., Scheibel T.
Coatings and films made of silk proteins
Appl. Mater. Interface. 29, 62-69
Zollfrank C., Scheibel T., Seitz H., Travitzky N.
Bioinspired materials engineering
Ullmann’s Encycl. Ind. Chem.
Humenik M., Scheibel T.
Self-assembly of nucleic acids, silk and hybrid materials thereof
J. Phys. Condens. Matter 26, 503102
Heidebrecht A., Scheibel T.
Spionik – Biotech Spinnenseide und ihre Einsatzgebiete
GIT Bioforum 2, 20-22
Humenik M., Scheibel T.
Nanomaterial building blocks based on spider silk–oligonucleotide conjugates
ACS Nano 8, 1342-1349
Zeplin.H P., Maksimovikj C N., Jordan C M., Nickel J., Lang G., Axel H., Römer L., Scheibel T.
Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation
Adv. Funct. Mater. 24, 2658–2666 doi: 10.1002/adfm.201302813
Pinto-S D J R., Lamprecht G., Chen W Q., Heo S., Hardy J G., Priewalder H., Scheibel T., Palma M S., Lubec G.
Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders
J. Prot., 105, 174–185
Suhre M H., Gertz M., Steegborn C., Scheibel T.
Structural and functional features of a collagen-binding matrix protein from the mussel byssus
Nat. Comm., 5, 3392
Suhre MH, Gertz M, Steegborn C,
,Structural and functional features of a collagen-binding matrix protein from the mussel byssus
J. Struct. Biol. 186, 75-85 doi: 10.1016/j.jsb.2014.02.013
Hardy J G., Pfaff A., Egaña-L A., Müller A H., Scheibel T.
Glycopolymer functionalization of engineered spider silk protein based materials for improved cell adhesion
Macromol. Biosci., 14, 936-42
Suhre.H M., Steegborn C., Gertzb M., Scheibel T.
Crystallization and preliminary X-ray diffraction analysis os PTMP1
Acta. Cryst. Sec. 70, 769-772
Humenik M., Magdeburg M., Scheibel T.
Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins
J. Struct. Biol., 186, 431-437
Humenik M., Markus D., Scheibel T.
Controlled hierarchical assembly ofspider silk-DNA chimeras into ribbons and raft-like morphologies
Nano Lett.., 14, 3999−4004
Lauterbach Y A., Scheibel T.
Life cycle assessment of spider silk nonwoven meshes in an air filtration device
Green Materials., 3: 15-24
Zeplin H P., Berninger K A., Maksimovikj C N., Gelder V P., Scheibel T., Walles H.
Verbesserung der Biokompatibilität von Silikonimplantaten
Handchir. Mikrochir. Plast. Chir., 46: 336-41
Scheibel T.
Engineering of rec SSP allows defined drug uptake and release
TechConnect Briefs: Biotech, Biomaterials, and Biomedical 1-4
DeSimone E., Schacht K., Jungst T., Groll J., Scheibel T.
Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks
Pure Appl. Chem., 87: 737–749
Doblhofer E, Heidebrecht A, Scheibel T
To spin or not to spin: spider silk fibers and more
Appl. Microbiol. Biotechnol. 99: 9361-9380 doi: 10.1007/s00253-015-6948-8
Jungst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev.. 99: 9361-9380
Scheibel T.
Vom Spinnennetz zur High-Tech-Faser
Naturwiss. Rundschau.. 68: 524-525
Scheibel T.
Die Kräfte von Superhelden – Oder: Was Spiderman besser wissen sollte
Vorlesungsreihe KinderUniversität Bayreuth SS
Doblhofer E., Scheibel T.
Engineering of recombinant spider silk proteins allows defined uptake and release of substances
J. Pharm. Sci, 104: 988-994
Elsner B M., Herold M H., Herrmann M S., Bargel H., Scheibel T.
Enhanced cellular uptake of engineered spider silk particles
Biomater. Sci., 3: 543–551
Schacht K., Jüngst T., Schweinlin M., Ewald A., Groll J., Scheibel T.
Biofabrication of cell-loaded 3D spider silk constructs
Angew, Chem., 54: 2816–2820
Heidebrecht A., Eisoldt L., Johannes D., Schmidt A., Geffers M., Lang G., Scheibel T.
Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
Adv. Mater., 27: 2189–2194
Herrmann M S., Scheibel T.
Enzymatic degradation of films, particles and non-woven meshes
ACS Biomater. Sci. Eng., 1: 247–259
Humenik M., Smith A., Arndt S., Scheibel T.
Ion and seed dependent fibril assembly of a spidroin core domain
J. Struct. Biol. 191: 130–138
Humenik M., Smith A M., Arndt S., Scheibel T.
Data for ion and seed dependent fibril assembly of a spidroin core domain
Data in Brief 4: 571–576
Zahn H., Krasowski A., Scheibel T.
Silk
Ullmann’s Encycl. Ind. Chem.
Scheibel T., Groll J., Boccaccini R A., Zehnder T., Jüngst T., Schacht K.
Zellgewebe aus dem Drucker
Nachrichten aus der Chemie, 64: 13-16
Jüngst T., Smolan W., Schacht K., Scheibel T., Groll J.
Strategies and molecular design criteria for 3D printable hydrogels
Chem. Rev., 116: 1496–1539
Bargel H., Scheibel T.
Zukunftsfeld Bionik
UBT Spektrum, 1: 54 – 57
Bauer J., Scheibel T.
Die Schwarze Witwe und ihre Künste
UBT Aktuell, 2: 60 – 63
Caplan L D., Scheibel T.
Recombinant Silk Production in Bacteria
Ref. Module in Materials Science and Engineering.8, 803581-802274
Peng L., Jiang S., Seuß M., Fery A., Lang G., Scheibel T., Agarwal S.
Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(L-lactide) by electrospinning
Macromol. Mater. Eng. 301: 48-55
Schaal D., Bauer J., Schweimer K., Scheibel T., Rösch P., Schwarzinger S.
Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster
Biomol. NMR Assign. 10: 199-202
Schacht K., Vogt J., Scheibel T.
Foams made of engineered recombinant spider silk proteins
ACS Biomater. Sci. Eng. 2: 517-525
DeSimone E., Schacht K., Scheibel T.
Cations influence the crosslinking of hydrogels made of recombinant, polyanionic spider silk proteins
Mater. Lett.183: 101-104
Haynl C., Hofmann E., Pawar K., Förster S., Scheibel T.
Microfluidics-produced collagen fibers show extraordinary mechanical properties
Nano Lett.16: 5917 – 5922
Borkner B C., Wohlrab S., Lang G., Scheibel T.
Surface modification of polymeric biomaterials using recombinant spider silk proteins
ASC Biomat. Sci.Eng.3, 767 – 775
Schierling B M., Doblhofer E., Scheibel T.
Cellular uptake of drug loaded spider silk particles
Biomater. Sci. 4: 1515-1523
Helfricht N., Doblhofer E., Duval L F J., Scheibel T., Papastavrou G.
Colloidal properties of recombinant spider silk protein particles
J. Phys. Chem. C.120, 18015 – 18027
Doblhofer E., Schmid J., Rieß M., Daab M., Suntinger M., Habel C., Bargel H., Hugenschmidt C., Rosenfeldt S., Breu J., Scheibel T.
Structural insights into water-based spider silk protein-nanoclay composites with excellent gas and water vapor barrier properties
Appl. Mater. Interfaces.8, 25535 – 25543
Bauer J., Schaal D., Eisold L., Schweimer K., Schwarzinger S., Scheibel T.
Acidic residues control the dimerization of the N-terminal domain of Black Widow spiders’ Major Ampullate Spidroin 1
Sci. Rep. 6, 34442
Helfricht N., Doblhofer E., Bieber V., Lommes P., Sieber V., Scheibel T., Papastavrou G.
Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurement
Soft Matter. 13: 578 – 589
Lang G., Neugirg R B., Kluge D., Fery A., Scheibel T.
Mechanical testing of engineered spider silk filaments
ACS Appl. Mater. Interfaces, 9: 892 – 900
Bauer J., Scheibel T.
Conformational stability and interplay of N- and C-terminal domains
Biomacromolecules, 18, 835 – 845
Thamm C., Scheibel T.
Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s)
Biomacromolecules, 18: 1365 – 1372
Neuenfeldt M., Scheibel T.
Sequence identification, recombinant production, and analysis of the self-assembly of egg stalk silk proteins from lacewing Chrysoperla carnea
Biomolecules, 7: 43
Bauer J., Scheibel T.
Dimerization of the conserved N-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain
Biomacromolecules, 18: 2521 – 2528
Thamm C., DeSimone E., Scheibel T.
Characterization of hydrogels made of a novel spider spilk protein eMaSp1s and evaluation for 3D printing
Macromol. Biosci., 11: 1700141
Golser A. V., Scheibel T.
Biotechnological production of the mussel byssus derived collagen preColD
RSC Adv. 7: 38273 – 38278
Petzold J., Touska F., Zimmermann K., Scheibel T., Engel B F.
Surface features of recombinant spider silk protein eADF4(κ16)-made materials are well-suited for cardiac tissue engineering
Adv. Funct. Mater., 27: 1701427
Scheibel T.
Applicability of biotechnologically produced insect silks
Zeitschrift für Naturforschung,72, 365-385
Jokisch S., Neuenfeldt M., Scheibel T
Silk-based fine dust filters for air filtration
Adv. Sustainable Syst., 1: 1700079 doi:10.1002/adsu.201700079
Anton A. M., Heidebrecht A., Mahmood N., Beiner M., Scheibel T., Kremer F.
Foundation of the outstanding toughness in biomimetic and natural spider silk
Biomacromolecules, 8: 3954 – 3962
DeSimone E., Schacht K., Alexandra P., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication 9, 4, 044104
Wicklein V. J., Singer B. B., Scheibel T., Salehi S.
Nanoengineered biomaterials for corneal regeneration
In: Nanoengineered Biomaterials for Regenerative Medicine. Micro- and Nano Technologies, Elsevier: 379-415
Jokisch S., Bargel H., Scheibel T.
Einsatz von Biomaterialien in Filtersystemen
In: Prototype Nature
Bargel H., Scheibel T.
Bio-inspirierte Materialien
MNU Journal, 1: 4-10
Bargel H., Scheibel T.
Inspirationen für mechanisch stabile Materialien aus der Natur – Von Gräsern über Spinnenseide bis zu Kieselalge
MNU Journal, 1: 37 – 44
Humenik M., Lang G., Scheibel T.
Silk nanofibril self-assembly versus electrospinning
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10: e1509
Haug M., Reischl B., Prölß G., Pollmann C., Buckert T., Keidel C., Schürmann S., Hock M., Rupitsch S., Heckel M., Pöschel T., Haynl C., Kiriaev L., Head S. L., Friedrich O., Scheibel T.
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and ctive/passive biomechanics in muscle and biomaterials
Biosens. Bioelectron., 102: 589 – 599
Mickoleit F., Borkner C. B., Toro-Nahuelpan M., Herold, H. M., Maier D. S., Plitzko J. M., Schüler D., Scheibel T.
In-vivo coating of bacterial magnetic nanoparticles by magnetosome expression of spider silk-inspired peptides
Biomacromolecules, 19: 962 – 972
Salehi S., Scheibel T.
Biomimetic spider silk fibres: from vision to reality
The Biochemist, 40: 4 – 7
Aigner T. B., DeSimone E., Scheibel T.
Biomedical Applications of Recombinant Silk-Based Materials
Adv. Mater., 30: 1704636
Lintz E. S., Neinhuis C., Scheibel T.
Altering silk film surface properties through Lotus-like mechanisms
Macromol. Mater. Eng., 303: 1700637
Golser A. V., Scheibel T.
Routes towards novel collagen-like biomaterials
Fibers, 6: 21
Kumari S., Bargel H., Anby M. U., Lafargue D., Scheibel T.
Recombinant spider silk hydrogels for sustained release of biologicals
ACS Biomater., 4: 1750 – 1759
Lucke M., Mottas I., Herbst T., Hotz C., Römer L., Schierling M., Slotta U., Spinetti T., Scheibel T., Winter G. T., Bourquin C., Engert J.
Engineered spider silk hybrid particles as delivery system for peptide vaccines
Biomaterials, 172, 105 – 115
Golser A. V., Röber M., Börner H. G., Scheibel T.
Engineered Collagen: A redox switchable framework for tunable assembly and fabrication of biocompatible surfaces
ACS Biomater. Sci. Eng., 4: 2106 – 2114
Hofmann E., Krüger K., Haynl C., Scheibel T., Trebbind M., Förster S.
Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter contro
LabChip,18, 2225-2234
Scheibel T.
Recombinant production of mussel byssus inspired proteins
Biotechnol. J., 13: 1800146
Molina A., Humenik M, Scheibel T.
Nanoscale patterning of surfaces via DNA directed spider silk assembly
Biomacromol., 20, 347-352
Zha H. R., Delparastan P., Fink D. T., Bauer J., Messersmith P. B., Scheibel T.
Universal nanothin silk coatings via controlled spidroin self-assembly
Biomater. Sci., 2019, 7, 683-69
Röber M., Laroque S., Scheibel T., Börner H.-G.
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides
Euro. Polym. J., 112, 301 – 305
Herold H. M., Aigner T. B., Grill C., Krüger S., Taubert A., Scheibel T.
Spider-MAEN recombinant spider silk based hybrid materials
Bioinspired, Biomimetic Nanobiomater., 8, 99-108
Suhre H M., Scheibel T.
A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant_supplement
Europolymj. 113, 305 – 331
Humenik M., Mohrand M., Scheibel T.
Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity.
Bioconjugate Chem., 29: 898 – 904.
Scheibel T
Herstellung und Anwendung von Spinnenseide
Bionik. Patente aus der Natur 3. Bionik Konferenz. 130-139
Smith M A., Scheibel T.
Functional amyloids used by organisms: A lesson in controlling assembly
Macromol. Chem. Phys. 210, 127-135
Spieß K., Wohlrab S., Scheibel T.
Structural characterization and functionalization of engineered spider silk films
Soft Matter 6, 4168–4174
Lang G., Herold H., Scheibel T.
Properties of engineered and fabricated silks
Fibrous Proteins. Structures and Mechanisms. Subcell. Biochem., 82: 527-573
DeSimone E., Pellert A., Schacht K., Scheibel T.
Recombinant spider silk-based bioinks
Biofabrication, 9: 044104
Wang J., Scheibel T.
Coacervation of the recombinant Mytilus galloprovincialis foot protein-3b
Biomacromolecules, 19: 3612 – 3619
Roshanbinfar K., Vogt L., Greber B., Diecke S., Boccaccini A. R., Scheibel T., Engel F. B.
Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues
Adv. Funct. Mat., 28: 1803951
Hardy J. G., Bertin A., Torres‐Rendon J. G., Leal‐Egaña A., Humenik M., Bauer, F., Walther A., Cölfen H., Schlaad H., Scheibel T.
Facile photochemical modification of silk protein-based biomaterials
Macromol. Biosci., 28: 1800216